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1. Introduction

The existence of steroids has been known for more than
a century with the isolation of cholesterol from gall stones
by Chevreul in 1815,1 the elucidation of its chemical struc-
ture by Windaus in 1932,2 and the first total synthesis of
equilenin accomplished by Bachmann in 1939 taking advan-
tage of Butenandt’s ketone.3 With their discovery probably
dating from ancient times and their chemical characteriza-
tion in the 1930s,4 vitamins D have also largely contributed
to the incontestable explosion of interest in steroid chemis-
try. Several research groups, including those of Elisabeth
Dane and Robinson, have investigated various synthetic
methods for the preparation of steroids, such as intermolec-
ular Diels–Alder or aldol cyclization, and have proposed
a variety of new structural motifs.5 For a long time, however,
only racemic approaches or modifications of natural sources
were employed by chemists, considering that only a few
efficient asymmetric methods were available to control the
formation of stereogenic centers.6 Thus, the hemisynthesis
of progesterone reported in 1947 by Marker, from sapoge-
nins extracted from agaves of Mexico and the Southern
United States, has revealed as a major breakthrough in
modified steroid synthesis.7 In 1952, Peterson8 showed
that microbiological hydroxylation of progesterone by the
mushroom, Rhizopus nigricans, occurred regio- and stereo-
selectively at the C(11) position9,10 opening up a route to the
preparation of cortisone,11 the so-called ‘wonder drug’
(Scheme 1).8

Since 1959, the total synthesis of steroids has become appli-
cable in industrial production mainly thanks to the discovery
by Torgov of a process making possible the assembly of a
steroidal A/B bicyclic core derived from 6-methoxy-1-tetra-
lone with D-rings. The condensation was described for the
first time with methylcyclohexanedione in the presence of
Triton� B as a base to give a seco-C tricyclic intermediate
that cyclized to form the Torgov diene and was converted
into D-homoestrone (Scheme 2).12 This cyclization step
promoted by dehydrating agents or acidic catalysts was
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largely employed by different groups to synthesize steroid-
type compounds.

Ananchenko and Torgov extended this reaction to the
preparation of estrone and 19-nor-testosterone by using
methylcyclopentanedione as the D-ring precursor.13 The
thermodynamically disfavored trans-CD-ring junction was
obtained by hydrogenation of the C(14)–C(15) double
bond, while the anti-relation between the vicinal C(8) and
C(9) atoms was established by a Birch-type reduction.14

These significant results show that the configuration of
the methyl group at the C(13) carbon center can induce the
trans-anti-trans relative stereochemistry of the natural
steroids (Scheme 3).

In parallel studies, this method was exploited by Merck
Sharp and Dohme chemists to prepare 19-nor-testosterone15
and a major oral contraceptive was elaborated from ethyl-
cyclopentanedione by Wyeth Ltd.16 Simultaneously, it was
shown that the yield of the Torgov reaction could be im-
proved by the preliminary formation of a thiouronium salt,
as depicted in Scheme 4.17

Most of the biological activity of steroids is strictly restricted
to the natural enantiomer. The triterpenes, which are the pre-
cursors of cholesterol and the metabolization of which leads
to various steroids, are present only as one enantiomer in
Nature. In general, a loss of 50% of the activity results for ra-
cemic compounds. However, ent-steroids may havea different
physiological activity from their natural enantiomer (nat-
steroid).18 To illustrate this difference of physiological behav-
ior, (+)-androsta-4,16-dien-3-one was found to have a strong
urine odor with an extraordinarily lower threshold of 1 ppb,
whereas its enantiomer does not have any odor (Fig. 1).19,20
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To obtain steroids of the natural series, chemists first re-
solved hemiphthalates or hemisuccinates of rac-steroids21,22

or carried out enzymatic resolutions,22 but these strategies
present the major disadvantage of losing half of the synthe-
sized product. In consequence and for economic reasons, it
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Figure 1.
seems preferable to perform the resolution as soon as possi-
ble in the synthesis using, for example, the acid function of
a synthetic intermediate to separate both enantiomers. Based
on this strategy, Velluz and co-workers from Roussel-Uclaf
described in 1960 the first enantioselective synthesis of
(+)-nor-testosterone. The linear approach reported by John-
son23 and applied by Banerjee24 involved a tricyclic acid,
which could be resolved by (+)-(1S,2S)-1-p-nitrophenyl-
2-aminopropane-1,3-diol. The subsequent steps gave rise
to (+)-nor-testosterone and also to (+)-b-estradiol (Scheme
5), (+)-9,11-dehydrotestosterone, (+)-adrenosterone, and
(+)-cortisone (Scheme 6).25 This sequence constitutes the
first total synthesis of natural steroids on an industrial scale.
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Over the last few years, several review articles26 based on
synthetic approaches to different classes of steroids includ-
ing vitamin D-like structures have emerged in the area of ste-
roid chemistry, but these usually consider a single aspect
such as the construction of the aliphatic side chain,27 the
obtaining of the trans-hydrindane ring,28 its elaboration
through C-ring closure as a key step,29 the preparation of
enantiomeric steroids,18 steroid synthesis involving intramo-
lecular cycloadditions or transition-metal-catalyzed reac-
tions30 and, finally, various approaches to vitamin D
synthesis.31 In the present review, the major approaches to-
ward enantioselective steroid synthesis, the corresponding
key steps of which are classified according to the method
used to introduce the chirality, are explored. Synthetic
routes, involving functional-group transformations of meta-
bolic or degradation precursors of natural steroids, will not
be covered by this review.

2. Chemical resolution of chiral synthetic intermediates

2.1. By recrystallization of diastereomeric salts

To render their synthesis convergent, chemists from Roussel-
Uclaf have prepared earlier in the sequence a new optically
pure bicyclic acid via a tandem conjugate addition–Robinson
annulation and its resolution with (�)-ephedrine. A sig-
nificant result was obtained with the diastereoselective
hydrogenation of this acid that led to the CD-bicyclic system
with a trans-ring junction. The formation of an intermediate
d-lactone followed by its reaction with the Grignard reagent
of 2-(2-bromo-ethyl)-2-methyl-[1,3]dioxolane, according to
the Fujimoto–Belleau reaction,32 allowed the construction
of the B-ring. A subsequent cyclization through aldol con-
densation completed the synthesis (Scheme 7).33 Adrenos-
terone also was accessible by reductive alkylation of the
tricyclic enedione with the Wichterle reagent and cyclization
(Scheme 8).34

An elegant strategy was elaborated by the Merck group in-
volving resolution of a synthetic intermediate without loss
of product. The secodione from the Torgov reaction could
be selectively reduced to a ketol and its hemisuccinate
subjected to an optical resolution with quinine. The dextroro-
tatory enantiomer was recycled after saponification and oxi-
dation of the hydroxyl group in position C(17) (Scheme 9).35

Hajos and Parrish reported the synthesis of the optically ac-
tive (�)-17b-hydroxy-des-A-androst-9(10)-in-5-one, easily
accessible from the indenol via a Robinson annulation of
methylcyclopentanedione with methylvinylacetone fol-
lowed by a selective carbonyl reduction. The corresponding
phthalate was resolved through diastereomeric salt forma-
tion with brucine. Construction of the key BCD-tricyclic in-
termediate36 used in the synthesis of steroids was realized as
shown in Scheme 10.37
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Saucy and Borer could easily prepare (�)-17b-hydroxy-
des-A-androst-9-en-5-one, an optically pure tricyclic
hydroxyketone used as a precursor of 9b,10a-testosterone.
The initial resolution was ensured by a conjugate addition
of (S)-(�)-a-methylbenzylamine to a vinyl ketone obtained
by the addition of vinylmagnesium chloride to 5-decano-
lide.38 The resulting spiroheterocyclic Mannich adduct
was converted into the BCD-tricyclic system after succes-
sive transformations comprising (a) its reaction with 2-meth-
yl-cyclopentane-1,3-dione followed by acidic treatment, (b)
hydrogenation of the transient diene that established the
trans-ring junction of the hydrindane, (c) hydration and oxi-
dation of the enol ether, and (d) aldol cyclocondensation of
the resulting diketone. The final hydrogenation of the enone
motif and the annulation of the tricyclic ketone with methyl
vinyl ketone completed the synthesis of 9b,10a-testosterone
(Scheme 11).39

Subsequently, a similar strategy was applied to the reso-
lution of a vinyl ketone intermediate conveniently
substituted by a linear side chain including an isoxazole moi-
ety. Under basic conditions, the isoxazole annulation
reaction developed by Stork40 allowed a direct access to
(+)-estr-4-ene-3,17-dione-type steroids (Scheme 12).41

By contrast, the optical resolution was performed at an early
stage on the acid phthalate derivative of a hydroxy nitrile in-
termediate using (R)-(+)-a-methylbenzylamine. The result-
ing optically active lactone was readily converted into the
desired Mannich base from the corresponding vinyl ketone
in a few steps. Its condensation with 2-methyl-1,3-cyclopen-
tanedione in refluxing toluene/acetic acid afforded predom-
inantly the expected ketol epimer. The dehydroxylated
enedione adduct cyclized to (+)-3-methoxy-1,3,5(10),9(11)-
estratetraen-17-one according to the sequence of Smith
and co-workers42 in which installation of the trans-fused
ring junction required a diastereoselective hydrogenation
over palladium on carbon of the C-8 substituted 17b-
hydroxy enone intermediate. Then, a reoxidation and an acid-
promoted cyclization–dehydration sequence completed the
approach (Scheme 13).43

During the convergent synthesis of (+)-3-methoxy-1,3,5(10)-
estratrien-11,17-dione, Oppolzer and co-workers resolved
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a keto acid intermediate by crystallization of the related
(+)-ephedrine salt. The starting keto acid was obtained by se-
quential conjugate addition of lithium 3,3-dimethylbutynyl-
vinylcuprate to 2-methyl-2-cyclopentenone and enolate
alkylation with methyl bromoacetate. The enantiomerically
pure vinylcyclopentane subunit was coupled with a benzo-
cyclobutenecarboxylic ester by C-acylation and readily en-
gaged in a thermal intramolecular Diels–Alder cycloaddition
with a transient reactive o-quinodimethane coming from the
ring opening of the benzocyclobutene motif (Scheme 14).44

Oppolzer and Roberts described a concise synthesis of (+)-
estradiol involving a regioselective alkylation of 5-cyano-
1,3-dihydrobenzo[c]thiophene-2,2-dioxide by an alkyl io-
dide derived from the previous optically active keto acid
fragment, and a thermal SO2-extrusion/cycloaddition se-
quence. Further transformations led to (+)-estradiol with
a global yield of 42% (Scheme 15).45

An alternative approach used to synthesize enantiomerically
enriched 19-nor-steroids oxidized in position 11 was pro-
posed by Daniewski. Michael addition of methylcyclo-
pentanedione to methyl chloroacrylate and subsequent
transformations gave access to rac-2-methyl-2-(b-acetoxy-
b-carboxyethyl)cyclopentane-1,3-dione, which could be re-
solved by means of (�)-a-phenylethylamine. In order to set
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up the C-ring, Daniewski converted the starting acid into a di-
azo ketone and coupled it with a trialkylborane. The boron
compound attacked the diazo ketone only from the less hin-
dered side and a concerted and stereospecific 1,2-shift of one
phenylethyl group accompanied by nitrogen elimination
yielded the tricyclic secodione with a cis-ring junction.
Thus, the latter underwent a cyclization reaction upon treat-
ment with Ac2O/p-TsOH leading to the 11-oxidized 19-nor-
steroid skeleton (Scheme 16).46
In their pioneer work on vitamin D and its derivatives, Lyth-
goe and co-workers achieved the preparation of an optically
active hydroxy enyne, precursor of the A-ring of vitamins
D. The key steps involved resolution of the racemic
keto-acid induced by (�)-quinine and reduction of the
(�)-enantiomer to the intermediate lactone, from which
the diol was accessible. The enyne was obtained by de-
hydrohalogenation of the u-bromodiene with NaNH2 in
ammonia (Scheme 17).47
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The future C-ring was elaborated from 1-methylcyclohex-3-
ene 1,cis-2-dicarboxylic acid in enantiomerically pure form
by resolution with (�)-quinine and converted into the mo-
noprotected diol, as illustrated in Scheme 18.48 In parallel,
a precursor of the side chain was prepared in two steps start-
ing from the citronellonitrile. Both fragments were subjected
to a stereospecific Johnson–Claisen [3,3] rearrangement,
which facilitated the introduction of the side chain and the
control of the stereochemistry in position C(17). A second
Claisen-type rearrangement using the Eschenmoser pro-
cedure ensured the stereochemistry of the C(14) center.
Finally, the D-ring was revealed through a Dieckman
condensation and further conventional transformations
furnished the 9a-chloro ketone (Scheme 19).49,50

With the enyne and the trans-hydrindane building blocks in
hand, Lythgoe and co-workers achieved the synthesis of
precalciferol in only three steps. The requisite trienic system
was assembled by coupling the 9a-chloro-des-AB-choles-
tan-8-one with the lithium derivative of the silyl-protected
(1S)-3-ethynyl-4-methylcyclohex-3-en-1-ol to give the
chlorohydrin intermediate, followed by treatment with bis-
(ethylenediamine)chromium(II) and semi-hydrogenation of
the dienyne system (Scheme 20).51

The same sequence carried out with 1-ethynyl-2-methyl-3,5-
bis(trimethylsilyloxy)cyclohexene furnished 1a-hydroxy-
precalciferol, which was converted in situ into 1a-hydroxy-
vitamin D3 through a thermal [1,7] hydrogen sigmatropy and
an isomerization of the trienic system (Scheme 21).52

In 1978, Lythgoe and co-workers provided a more straight-
forward route to reach the trienic system of vitamin D utiliz-
ing a dienic alcohol as an A-ring synthon, which could be
easily coupled to the Windaus–Grundmann ketone.53 First
of all, the authors achieved the synthesis of the optically
active diene diol by resolution of the racemic trans-cyclo-
hexenedicarboxylic acid with cinchonidine.54 The approach
to such a fragment, involving unsaturated lactone formation,
conversion into diol, and sulfoxide thermolysis,55 was
CO2H
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revealed to be quite long, not very attractive and not compet-
itive enough, compared to the degradation of vitamin D
(Scheme 22).56

By virtue of Linstead’s work on the resolution of b-methyl-
glutaric acid with cinchonidine,57 Lythgoe could prepare an
optically active g-lactone, from which he proposed a second
synthesis of the indanic CD-bicyclic system of vitamin D. A
Claisen rearrangement with an optically active allyl alcohol
and the g-lactone-derived cyclic orthoester set up the asym-
metric center C(13) and the rest of the synthesis followed the
protocol previously described and standard pathways to
afford the optically active Inhoffen–Lythgoe diol. Then,
the introduction of the side chain through a coupling reaction
between the primary tosylate and a Grignard reagent and its
functionalization with Hg(OAc)2–H2O/NaBH4 furnished
the des-AB vitamin D3 (Scheme 23).58
Thereafter, the Windaus–Grundmann ketone and the lithio
anion of the allylic phosphine oxide derived from the dienic
alcohol underwent a Wittig–Horner reaction, leading
directly to the trienic system with the correct geometry
(Scheme 24).59

In parallel work, Kocienski and co-workers proposed that
the roles of the two fragments be reversed by creating a nu-
cleophilic center at the C(8)-position of the hydrindane sys-
tem, which should interact with the A-ring aldehyde, coming
from the oxidation of the previous dienic alcohol synthon. To
make this coupling accessible, the authors prepared the sul-
fone, the lithio anion of which, shown in Scheme 25, reacted
with the aldehyde and gave the Julia olefination adduct.
Reduction with a lithium mercury amalgam followed by
removal of the benzoyl group generated the trienic part of
the vitamin D4 (Scheme 25).60
→
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In addition, this research group has reported an access to
1a-hydroxyprecalciferol utilizing a CD-bicyclic allylic sul-
fone obtained by degradation of a cholesterol derivative.61

A totally synthetic route of the same synthon was developed
by Ficini and co-workers in 1983. One of the key reactions
was the Lewis acid-catalyzed [2+2] cycloaddition of an
ynamine to methylcyclopentenone. The thermodynamic
hydrolysis of the immonium cation released the side chain
with the desired stereochemistry at C(13). A resolution of
the resulting acid with (�)-ephedrine made this approach
possible in the natural series. 8-p-Tolylsulfonylmethyl-des-
AB-cholest-8-ene, a known precursor of 1a-hydroxyvitamin
D3, could be prepared through Robinson annulation generat-
ing the C-ring and catalytic reduction of the a,b-unsaturated
keto-acid establishing the CD trans-junction, as depicted in
Scheme 26.62
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A structurally interesting enantiopure bicyclic keto acid has
been exploited in efficient syntheses of tetracyclic and seco-
B steroids by Grieco and Trost, respectively. Its preparation
and resolution with (S)-(�)-a-methylbenzylamine were
reported by Corey, who used it as a key intermediate in the
elaboration of prostaglandins.63 Grieco suggested pertinent
functional modifications including the stereoselective alkyl-
ation of the methyl ester enolate, later applied in the total
synthesis of steroids (Scheme 27).64

Thus, Grieco achieved the conversion of this bicyclo[2.2.1]-
heptane derivative into (+)-des-AB-cholest-11-en-9-one,
a known precursor of tachysterol3 and precalciferol3. First,
the compound was transformed into a key bicyclic lactone
by sequential Baeyer–Villiger oxidation and BF3-catalyzed
allylic transposition. The hydroxyl group at C(16) provided
a handle for establishing the stereochemistry at C(14) via a
1,3-chirality transfer involving a [3,3]-Claisen sigmatropic
rearrangement (Scheme 28).65

One year later, an approach to the synthesis of DL-estrone
was reported in which Grieco examined the stereospecific
alkylation of the enolate derived from the unsaturated bicy-
clic ketal ester with 2-(4-methoxybenzocyclobutenyl)ethyl
iodide. Upon thermolysis, the corresponding o-quinodime-
thane intermediate underwent intramolecular cycloaddition
and led to the desired steroid (Scheme 29).66
In parallel, Trost was interested in preparing the Inhoffen–
Lythgoe diol starting from the optically pure bicyclic hy-
droxy ketal, as indicated in Scheme 30. The 1,3-chirality
transfer process used for the elaboration of the CD trans-
junction was almost similar to the preceding Grieco’s proto-
col. Then, an advanced synthon of the Windaus–Grundmann
ketone could easily be obtained from the Inhoffen–Lythgoe
diol after different functional-group manipulations.67

2.2. By chromatographic separation of diastereomers

Besides the diastereomeric salt crystallization method, the
resolution of enantiomers of chiral synthetic intermediates
is also possible by derivatization to diastereomers and sepa-
ration by chromatography. To illustrate this method, Jiang
and Covey reported an efficient synthesis of ent-cholesterol,
the chirality of which originated from the enantiomerically
pure sterol D-ring containing the side chain, and the other
sterol C-, B- and A-rings were subsequently elaborated.
Based on published studies, the D-ring synthon was formed
via high diastereoselective intramolecular cyclopropanation
of an a-diazoester catalyzed by a copper(II) complex, and
the side chain was introduced by conjugate addition of
4-methylpentylmagnesium bromide in the presence of CuI
to the b-keto ester with retention of configuration, ensuring
the proper relative stereochemistry at C(17) and C(20).68
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After transesterification with (R)-(+)-pantolactone, each
diastereoisomers were easily separated by chromatography,
and the dextrorotatory adduct was then engaged in a step-by-
step Robinson annulation reaction with methyl vinyl ketone
that gave rise to the related hydrindenone. Michael
addition carried out at 0 �C guaranteed a total control of
the stereoselectivity at the C(13) chiral center. Subsequent
methoxycarbonylation at C(8) and hydrogenation of the
double bond using 5% Pd/BaSO4 gave the trans-hydrind-
anone as the unique product. The remaining B and A sterol
rings were elaborated by cyclocondensation of a mesylate
intermediate with ethyl 3,7-dioxo-octanoate mono ethylene
ketal, the C(19) methyl group was introduced selectively
via reductive alkylation of the enone functionality, and
further transformations then afforded (�)-ent-cholesterol
(Scheme 31).69



11525A.-S. Chapelon et al. / Tetrahedron 63 (2007) 11511–11616
OEt

O O NaH - n-BuLi / THF

→ crotyl bromide OMe

O O 1. p-TsN3 - Et3N / MeCN

2. bis(N-tert-butylsalicylaldiminato)
    copper(II) / PhMe

HMeO2C

MeO2C

O

BrMg

- CuI / THF

O

(±), 60% overall yield

(±), 68% yield O

O

O O

O

O OH

O

- DMAP / PhMe
O

O

O O

O

1.

2. chromatog.
(+), 42% yield (–), 40% yield

+

O

O

O O

O
NaOMe /  MeOH

O

O

O

O O

O
O 59% yield

1. TsOH / PhMe

3. LiAlH4 / THF

HO

2. (CH2OH)2
- TsOH / PhMe

O

O
85% yield

1. MsCl - Et3N / CH2Cl2
2. LiI - NaHCO3 / Dioxane

3. Li(C2H5)3BH / THF

72% yield
4. HCl, 2 N / THF O

1. Mg methyl carbonate
/ DMF

2. diazomethane / Et2O O

CO2Me3. H2 - Pd / BaSO4 / MeOH H

1. (CH2OH)2
- TsOH / PhH

2. LiAlH4 / Et2O
3. HCl, 2 N / acetone

65% yield

O
H
OMs

4. MsCl - Et3N / CH2Cl2

EtO2C

OO

O
MeONa / MeOH

H
O

CO2Et

OO
1. NaOH, 5N
2. 1 mmHg, 80 °C
3. Li - NH3 / THF

→ MeI H

H
H

H

90% yield 54% overall yield
4. HCl, 6 N / MeOH O

Ac2O - Me3SiCl - NaI

H

H

H
AcO

NaBH4

/ EtOH
H

H

H
HO (+), 79% overall yield

(+)

Scheme 31.
Deslongchamps has developed an anionic polycyclization
procedure that allowed the preparation of advanced tetra-
cyclic 14-b-hydroxysteroids related to batrachotoxin and
ouabain with complete control of the stereochemistry.
The reaction sequence involved the formation of a novel
Nazarov-type reagent containing the D-ring and reaction
of its enolate with an unsaturated b-keto aldehyde A-ring
precursor. The introduction of chirality into the Nazarov
intermediate was achieved by the use of (R)-(�)-pantolac-
tone as a good chiral auxiliary and separation of the result-
ing diastereomers of the b-keto ester D-ring precursor
according to Covey’s work previously reported (Scheme
32).70

In 1998, an approach to an enantiopure A-ring enyne
synthon for vitamin D3 analogs starting from a 7-oxanor-
bornenic disulfone was published. Arjona and co-workers
showed that the derived racemic b-hydroxy sulfone could
be resolved to pure enantiomers via diastereomeric ester
formation with the use of (+)-camphanoyl chloride as a chi-
ral derivatizing agent. After separation of both compounds
on silica gel and elimination of the camphanol group of the
(�)-diastereomer under basic conditions, the resulting
vinyl sulfone was subjected to an alkylative cleavage of
the oxygen bridge with lithium acetylide. Final vinyl
sulfone isomerization and substitution of the sulfone
functionality by a methyl group liberated an A-ring analog
(Scheme 33).71

A few years earlier, Haynes and co-workers had proposed an
interesting strategy for constructing the optically active
CD-hydrindanol intermediate based on a tandem asymmetric
conjugate addition of the homochiral lithiated (E)-butenyl-
phosphine oxide to 2-methylcylopentenone followed by in
situ enolate trapping with b-chlorovinyl ketone. The key
feature of this transformation included a total control of
the stereochemistry of the C(13), C(17) and C(20) centers
accounted for by a 10-membered trans-fused chair–chair
transition state of the intermediate enolate. The enantiomeri-
cally pure starting material was prepared by resolution of
racemic phosphinothioic acid with (S)-(�)-a-methylbenzyl-
amine, desulfurization with Raney nickel, and allylation of
the resulting phosphine oxide. Subsequent intramolecular
aldol condensation produced the hydrindenone and
Windaus–Grundmann ketone should be obtained by trans-
position of oxygen from C(9) to C(8), elaboration of the
trans-ring junction (see Daniewski’s method in Scheme
51), and Wittig–Horner-mediated side chain extension.
This sequence was successfully reported for the functional-
ization of the racemic CD-intermediate hydrindenone
prepared with the use of (E)-but-2-enyldiphenylphosphine
oxide (Scheme 34).72
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3. Desymmetrization of 2-substituted
1,3-cyclopentanediones

3.1. By a microbial approach

Resolution processes usually result in a loss of the undesired
enantiomer. However, this problem can be circumvented by
exploiting the prochiral character of some intermediates. As
previously reported, Michael addition of 2-methylcyclopen-
tane-1,3-dione to 5-oxo-6-heptenoic acid methyl ester and
Torgov reaction from 6-methoxy-1-tetralone afforded the re-
spective substituted achiral secodiones possessing a prochiral
center. Subsequent acid-catalyzed aldol condensation with
one of the ketone functions generates the bicyclic and tetracy-
clic structures. At this stage, a stereogenic center is created,
suggesting that a preliminary differentiation of both carbonyl
groups should give access to only one enantiomer. In 1966,
French and German industries reported at the same time the
enantioselective microbial reduction of the intermediate dione
leading to the optically active secoketol. Roussel-Uclaf
researchers proposed the use of Rhizopus arrhizus Fischer
for the reduction of the cyclopentane-1,3-dione, represented
in Scheme 35,73 while those of Schering employed Saccharo-
myces uvarum with the Torgov secodione (Scheme 36).74

Then, the latter was used as starting material in the synthesis
of optically active 11-ketoestrane derivatives.75

A particularly interesting optically active steroid CD-ring syn-
thon was prepared by Dai and Zhou through a microbial asym-
metric reduction of a prochiral trione, obtained by alkylation
of 2-ethylcyclopentane-1,3-dione with 3-oxo-5-(phenylthio)-
pentyl methanesulfonate, using Saccharomyces cerevisiae.
After sulfur oxidation, the generated sulfone underwent an
acid-catalyzed cyclization to an unsaturated ketosulfone,
readily converted into trans-hydrindanone after selective
catalytic hydrogenation of the enone motif (Scheme 37).76
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3.2. By formation of diastereoisomers

Roussel-Uclaf chemists have observed that L-tartramic acid
hydrazide placed in aqueous methanol with traces of acetic
acid could react reversibly with the Torgov secodione and
only one of the diastereoisomers precipitated. Treated with
HCl in dioxane, this compound cyclized into a (+)-estrone
precursor (Scheme 38).77

In another approach, Nara and co-workers reported the enan-
tioconvergent synthesis of an optically pure steroid interme-
diate by considering first the stereoselective reduction of the
Torgov secodione in meso-diol followed by its partial esteri-
fication with N-mesyl (S)-phenylalanyl chloride as a chiral
reagent. The diastereoisomers were separated by chromato-
graphy and converted into a unique optically pure estrone
precursor via a sequence of protection–deprotection–oxida-
tion and a final acid-promoted cyclization (Scheme 39).78

3.3. By organometallic catalysis

More recently, Enev and co-workers from Schering AG re-
ported the first catalytic and enantioselective cyclization of
the well-known methyl secodione required in the Torgov ap-
proach to estrone. This methodology involved an elegant
asymmetric desymmetrization of the cyclopentanedione
unit promoted by a new sterically demanding bis-steroidal
titanium complex. In terms of yield and ee, this approach
showed promising results, compared to the existing micro-
biological and chemical methods (Scheme 40).79
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3.4. By asymmetric induction with amino acids

3.4.1. Hajos–Parrish–Eder–Sauer–Wiechert reaction.
Michael addition of 2-substituted cyclopentane-1,3-diones
to vinyl ketone reagents generates a prochiral triketone,
the subsequent intramolecular aldol condensation of which
forms the six-membered ring of the indenedione skeleton.
In 1971, Hajos and Parrish80 on the one hand and Eder,
Sauer, and Wiechert on the other,81 showed that upon expo-
sure to amino acids in the natural L-configuration, in partic-
ular L-proline, prochiral triketones led to ketol or enedione
adducts with excellent chemical yields and with close to
100% enantiomeric excess in some cases. This so-called
Hajos–Parrish–Eder–Sauer–Wiechert reaction represents
one of the most significant developments in the organic
synthesis field.82,83

To perform this transformation, Hajos and Parrish operated
with a catalytic amount of (S)-(�)-proline in anhydrous
DMF at room temperature. Dehydration of the resulting
cis-ketol under acidic conditions gave the (+)-indenedione.
This synthesis was all the more interesting in that the tri-
ketone resulting from the addition of the 2-methylcyclopen-
tane-1,3-dione to methyl vinyl ketone could be obtained
with 88% yield by using water as solvent (Scheme 41).84,85

Eder, Sauer, and Wiechert used harsher experimental con-
ditions to achieve the ring closure of the triketone leading
directly to the indenedione. The reaction was carried out
in acetonitrile containing 1 N perchloric acid and heated
at 80 �C for 20 h. For the triketone resulting from the addi-
tion of methylcyclopentanedione to methyl vinyl ketone,
the chemical yield reached 86% and the optical yield 84%.
Other examples were reported showing that proline and
phenylalanine were the catalysts of choice for this
transformation and that (S)-amino acids induced the forma-
tion of indenediones with an S configuration (Scheme 42).

Several hypotheses were proposed to rationalize the enantio-
selectivity of this cyclization process.82 First of all, it was in-
dicated that the reaction is accompanied by a weak negative
non-linear effect, suggesting that two molecules of proline
are implied in the transition state.86 Moreover, Agami ob-
served that the enantiomeric excess strongly decreases
when the proline concentration is reduced.87 It was believed
that the proline reacts with the methyl ketone moiety, gener-
ating the corresponding enamine, which adds to the most
reactive pro-R ring carbonyl and the second molecule of
proline acts according to a general base catalysis.86,88 As
depicted in Scheme 43, cyclization to (R)-indenedione is
affected by the major steric repulsion between the acid
function and the carbonyl group favoring the access to the
S enantiomer. This mechanism was reinforced by Hanessian
experiments showing that cis-4,5-methanoproline exhibits
a catalytic ability similar to that of proline, whereas trans-
4,5-methanoproline is less efficient (Scheme 44).89 Finally,
DFT theoretical calculations reported by Houk allowed the
conclusion that the proline carboxylic acid was involved in
an electrophilic activation of a cyclopentanedione carbonyl
group.90

The Hajos–Parrish methodology was applied to the prepara-
tion of the Wieland–Miescher ketone, starting from methyl
vinyl ketone and 2-methyl cyclohexane-1,3-dione. The re-
quired cyclohexenone was formed by aldol ring closure
with an overall yield of 71% and a 70% optical yield
(Scheme 45). A subsequent crystallization afforded the
enantiomerically enriched naphthalenedione.91–93 A few
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years later, Harada improved this procedure in order to ob-
tain the bicyclic diketone in an optically pure form.94

As part of their work on the preparation of a steroid biosyn-
thesis inhibitor, Hagiwara and Uda studied the enantioselec-
tive cyclization of the triketone affording the methylated
Wieland–Miescher ketone. After several tests, they found
that the best method consisted of using phenylalanine in
DMF in the presence of camphorsulfonic acid. In addition,
they stressed that the control of the temperature must be
increased slowly to reach a maximum of 55 �C. An enantio-
meric excess of approximately 80–90% was obtained from
either D- or L-amino acid (Scheme 46).95
3.4.2. Use of indenediones in steroid synthesis.
3.4.2.1. Syntheses of 19-nor-steroids. The previous

(+)-indenedione was largely employed by chemists as
a building block for the synthesis of various steroids. Hajos
and Parrish started with an approach to 19-nor-steroids and
showed, for the first time, that the asymmetric cyclization
leading to the optically active bicyclic dione can be carried
out on a 50–250 g scale. The subsequent unsaturated keto
acid was isolated with a modest yield, but the starting
indenedione could be recycled. The key step was the dia-
stereoselective hydrogenation of the keto acid that gave
rise to the unique trans-indanedione. Michael addition of
a substituted b-keto ester to the methylene ketone followed
Ph
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O
O

H
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O
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H
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O O
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Scheme 46.
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by aldol annulation, saponification, and decarboxylation
furnished the tricyclic compound, which was converted
into the required 19-nor-steroid (Scheme 47).96

Hoffmann-La Roche chemists reported a straightforward
route to (+)-estrone methyl ether based on a similar sequence
using the chiral bicyclic a-methylene ketone intermediate. A
conjugate addition of m-methoxybenzyl Grignard reagent
produced the tricyclic ketone and an acid-catalyzed aromatic
substitution completed the synthesis. The 18-ethyl steroid
analog was prepared according to a similar approach
(Scheme 48).97

The optically active b-keto ester, prepared by methylation of
the previous keto acid, was successfully exploited by Tsuji
and co-workers as a key intermediate in the synthesis of
(+)-19-nor-testosterone. A suitable enone reagent was easily
prepared via a palladium-catalyzed dimerization of buta-
diene and was subjected to a Michael addition with the bi-
cyclic keto ester derivative. A sequence of annulation and
stereocontrolled hydrogenation reactions afforded the target
tetracyclic compound (Scheme 49).98

The conjugated enolate of the tert-butyl protected ketol
coming from the Hajos–Parrish (+)-indenedione could be al-
kylated at the C(8)-position by suitable alkyl chains in order
to build up A- and B-rings of steroid backbones. Thus, Eder
trapped the transient enolate with m-methoxyphenacyl
bromide to prepare estradiol,99,100 whereas the addition of
2-bromo-30,50-dimethoxypropiophenone led to (+)-1,3-
dimethoxy-7b-methyl-1,3,5(10)-estratrien-17-one.101 Both
trans BC- and CD-ring junctions were established during
the diastereoselective hydrogenation of their respective
indenofuran intermediates. Construction of the B-ring by
acid-assisted cyclization and further transformations fur-
nished estradiol in a stereoselective manner (Scheme 50).

In 1988, Daniewski reported a convenient access to a trans-
hydrindanedione from the indenedione CD-building block
involving a reductive addition of a tert-butylcopper/
DIBALH complex. Condensation of the formed diisobutyl-
aluminum enolate with m-methoxyphenylacetaldehyde
gave a 9,10-seco compound, which served as a precursor
for the synthesis of estrone and 7-hydroxy-estrone, as pre-
sented in Scheme 51.102

Sauer showed that formaldehyde in the presence of benzene-
sulfinic acid allowed the sulfonylmethylation of indenedione
or its related keto ether. A significant result indicated that the
a,b-unsaturated enone system could be hydrogenated selec-
tively, giving the indanone with a trans-ring junction
(Scheme 52). The a-sulfonyl carbanion was alkylated by
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3,5-dimethoxybenzyl bromide in moderate yield. After sep-
aration, each epimer underwent acid-catalyzed cyclization.
A better yield was obtained from the (S)-sulfone cyclization,
and the tetracyclic adduct was then diastereoselectively
reduced and derivatized to estrone analogs (Scheme 53).103
Alternatively, Sauer’s trans-hydrindanone could be effi-
ciently alkylated by a b-keto ester according to a sulfone
elimination–Michael addition sequence. Several 19-nor-
steroids were synthesized in good yields, and particularly
des-A,19-di-nor-steroids (Scheme 54),104,105 but the major
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application of this alkylation process was reported in 1975
with the synthesis of the extraordinarily powerful progesta-
tional and ovulation inhibiting D-norgestrel steroid. The
optically active 18-methyl-19-nor-androstenedione was
prepared starting from the (+)-indenedione with a 35%
overall yield and its ethynylation led to D-norgestrel
(Scheme 55).106

In 1978, Kametani proposed a novel asymmetric approach to
estradiol by an intramolecular cycloaddition reaction of
a benzocyclobutene derivative involving an o-quinodime-
thane intermediate. The construction of the precursor
proceeded via C-ring cleavage of the Hajos–Parrish inda-
none, derivatization to the primary alkyl iodide, and conden-
sation with 1-cyano-4-methoxybenzocyclobutene at the
C(11)-position. Although the yields are generally moderate
to good, this convergent synthesis is long, particularly the
access to the optically pure cyclopentane derivative, which
requires 10 steps from the indanone (Scheme 56).30a,107

Daniewski suggested another route to a similar vinylcyclo-
pentanone chiral synthon, easily accessible in nine steps
from the Hajos–Parrish hydroxydione with a 28% overall
yield. The sequence proposed was based on a regioselective
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Baeyer–Villiger lactone formation and a stereospecific cata-
lytic hydrogenation of the unsaturated bicyclic lactone inter-
mediate. Further functional-group manipulations completed
the synthesis of this building block (Scheme 57).108

An original strategy was developed by Tietze and co-
workers, who created the typical tetracyclic ring system of
estrone using two consecutive pallado-catalyzed Heck reac-
tions of a brominated bromovinylarene with an enantiopure
hydrindene derived from the Hajos–Wiechert ketone. The
high degree of stereoselectivity observed at the cross-
coupling stage may be imposed by a shielding of the upper
face of the alkene by the angular methyl, whereas the regio-
selectivity was totally unexpected and difficult to under-
stand. Thus, intramolecular Heck reaction of the seco-B
intermediate employing the Herrmann–Beller palladacycle
gave the unusual cis-junction between C/D-rings and
completed the steroidal skeleton. Hydrogenation of the
cis-anti-trans compound with accompanying isomerization
of the benzylic stereogenic center allowed the selective
formation of the known estradiol derivative, which could
be converted into estrone (Scheme 58).109

This methodology was applied to the synthesis of a novel 19-
nor-steroid,110 the D-homoestradiol analog,111 aza-hetero-
cyclic compounds,112 and then the enantiopure thiasteroid
obtained from the related dibromothiophene derivative
(Scheme 59).113 In a similar manner, the B-nor-estradiol
could be prepared by a sequential chemoselective Suzuki-
type reaction of an optically active 6-5 bicyclic boronic ester
with 2-bromobenzyl chloride followed by intramolecular
Heck coupling (Scheme 60).114

On the other hand, de Meijere and S€unnemann employed
a combination of selective Stille–Heck cross-coupling reac-
tions with optically pure trans-hexahydroindenylstannanes,
4-substituted 2-bromocyclohexenol triflates, and alkyl
acrylates to give 1,6-disubstituted 1,3,5-hexatriene
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intermediates. To access the tetracyclic steroid skeleton, the
seco-B trienic system was heated in decalin at 215 �C and
underwent a 6p-electrocyclization with a high degree of out-
ward disrotational selectivity leading to the unique trans-anti
diastereoisomer (Scheme 61).115 Alternatively, construction
of the B-ring can also be realized utilizing a sequence of
Stille cross-coupling and Diels–Alder cyclization reactions
with a range of dienophiles. Novel steroid analogs possess-
ing a C-5b configuration were obtained (Scheme 62).116
Corey and Huang used the readily available enantiopure
indenolone resulting from a Robinson annulation with ethyl-
cyclopentanedione to prepare the third-generation oral con-
traceptive, desogestrel. A clean cationic cyclization favored
the construction of the tetracyclic framework and the correct
B/C trans-junction was established during the formation of
the critical 11-exo-methylene group. The synthesis is short,
very efficient, and potentially useful for industrial produc-
tion (Scheme 63).117
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From the acid obtained either from (+)-indenedione or from
the microbial degradation of sterols present in soya beans
and marketed by Pharmacia & Upjohn,118 Guarna and co-
workers synthesized 19-nor-10-azasteroids, a new class of
substrates that inhibit the enzyme, steroid 5a-reductase. A
key cyclization step, based on a tandem N-(acyloxy)iminium
ion–Michael addition reaction, constructed the A-ring and
provided the azasteroidal compounds (Scheme 64).119

3.4.2.2. Syntheses of testosterone. ent-Steroids could
be prepared by considering the Hajos–Parrish (�)-indene-
dione obtained with the available (R)-proline. Firmenich
chemists19 were interested in the synthesis of ent-testoster-
one involving two Wichterle annulations for the construction
of the B- and A-rings, respectively, as depicted in Scheme
65.88a,120
Taking for inspiration the work of Hajos and Parrish, Rych-
novsky prepared ent-testosterone from (�)-indenedione and
also used it to synthesize ent-cholesterol (Scheme 66).121

After having reported in 1985 a long synthesis of androster-
one implying an intramolecular Diels–Alder reaction for the
construction of the steroidal A/B-ring system (Scheme
67),122 Fukumoto proposed in 1990 a new synthetic method-
ology consisting of a 1,3-dipolar cycloaddition of a nitrile
oxide used to build the B-ring and facilitate the elaboration
of the cyclohexenone A-ring (Scheme 68).123

3.4.2.3. Syntheses of cholesterol. From (�)-testoster-
one (or ent-testosterone), Kumar and Covey realized the intro-
duction of the cholesterol side chain via a Me2AlCl-mediated
ene reaction of (Z)-exo cyclic olefin with 4-methyl-1-pentanal.
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Selective hydrogenation of the resulting D16 double bond and
removal of the 22-hydroxyl group gave the ent-cholesterol
(dextrorotatory) with a 9.7% overall yield (Scheme 69).124

3.4.2.4. Syntheses of vitamin D derivatives. (i) Con-
struction of trans-fused CD-bicyclic systems by hydro-
genation of C(8)-substituted indenones: Baggiolini and
co-workers from Hoffmann-La Roche exploited the keto acid,
asymmetrically synthesized by Hajos and Parrish, to prepare
the Windaus–Grundmann ketone hydroxylated at the C(25)-
position. Catalytic hydrogenation of the unsaturated system
established the C/D trans-ring junction and the 25-hydroxy
side chain with the proper absolute configuration at C(20)
was introduced by an ene reaction. This synthon was widely
used in the synthesis of 1a-hydroxyvitamin D metabolites
such as 1a,25-dihydroxycholecalciferol (Scheme 70).125
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Then, the same authors elaborated the CD-bicyclic portion
of 1a,25(S),26-trihydroxycholecalciferol. The remote chi-
ral center at C(25) was introduced through a regionspecific
and diastereoselective 1,3-dipolar cycloaddition of the
C(23) nitrone with methyl methacrylate. After separation
from the other three components, the desired (23S,25S)-
isomer was isolated in 71% yield. The starting nitrone
was prepared from the Inhoffen–Lythgoe diol by one-
carbon homologation and the resulting isoxazolidine con-
verted into the triol CD-ring synthon. Condensation of
the hydrindanone with the phosphinoxy anion, the syn-
thesis of which is described in Section 6.2, completed the
synthetic approach to 1a,25(S),26-trihydroxycholecal-
ciferol (Scheme 71).126

In 1986, Fukumoto reported a new stereocontrolled ap-
proach to the Windaus–Grundmann ketone and vitamin D3

involving the asymmetric synthesis of des-AB-cholestane
and 8a-(phenylsulfonyl)-des-AB-cholestane from the opti-
cally pure (�)-indenedione. The reaction sequence proposed
by Fukumoto and reported in Scheme 72 is long, but rela-
tively efficient.127

As reported by Mouriño, the Hajos–Parrish indenedione
could be converted into the vitamin D trans-hydrindanol
fragment by using a key hydroxyl-directed hydrogenation
of the advanced hydrindenol intermediate in the presence
of Wilkinson’s catalyst (Scheme 73).128 This building block
provided access to a trans-ethenyl-hydrindene, which
represents a potent steroid CD-ring diene precursor
(Scheme 74).129

In a synthesis of estradiol developed by Rigby, the trans-eth-
enyl-hydrindene participated in a [6p+4p] cycloaddition
process with a substituted thiepin dioxide chromium(0)
complex and the resulting cycloadduct underwent a
Ramberg–B€acklund rearrangement that liberated the tetra-
cyclic steroid nucleus. Routine functional-group changes
afforded the steroid target (Scheme 75).130

Tietze and Subba Rao proposed an alternative method for
reducing the indenone to the trans-fused bicyclic system fea-
turing an efficient palladium-catalyzed hydrogenolysis of an
allylic formate (Scheme 76).131

(ii) Construction of cis-fused CD-bicyclic systems by selec-
tive hydroboration–oxidation sequence: the 14,20-bis-epi-
Inhoffen–Lythgoe diol derived from (+)-indenedione or
obtained by degradation of vitamin D2 was used by Vandewalle
to prepare 14,20-bis-epi analogs of 1a,25-dihydroxy-19-
nor-vitamin D3. From an advanced indene intermediate,
construction of the cis-fused hydrindane with an 8-hydroxy
function was realized by selective hydroboration–oxidation
of the b-face, and the introduction of the methyl group at
the C(20)-position with the unnatural (R)-configuration
was performed either by diastereoselective enolate methyl-
ation according to the work of Wicha and co-workers
(Scheme 77)132 or by reductive alkylation of the unsaturated
ester (Scheme 78).133

(iii) Construction of trans-fused CD-bicyclic systems by re-
ductive epoxide ring opening: Daniewski proposed another
strategy to obtain trans-hydrindanes based on a simpler
six-step synthesis starting from the well-known enedione
and comprising a copper/DIBALH-induced generation of
the diisobutylaluminum enolate and its bromination,
reduction of the resulting a-bromoketone to bromohydrin,
and base-catalyzed epoxide formation followed by
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regioselective LAH ring opening. Multiplication of the given
yields resulted in a 21% overall yield (Scheme 79).134

The reductive bromination step of the Hajos dione was then
improved by the use of a novel silylcopper catalyst, dimethyl-
phenylsilylcopper(I), more efficient than tert-butylcopper(I),
which increased the overall yield to 26% (Scheme 80).135
O
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70% yield
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Several intermediates for the synthesis of steroids including
enantiomerically pure indene derivatives and 1,2,2,3-tetra-
substituted cyclopentanes have been synthesized, starting
from the trans-hydrindane product of 1,4-reduction
(t-BuCu/DIBALH) of the Hajos–Parrish ketone (Scheme
81).136

Very recently, Wicha proposed two different approaches to
the trans-hydrindane alcohol from a common trans-hydrin-
danediol for calcitriol synthesis. The key step was the reduc-
tion of the epoxide alcohol, prepared from the Hajos–Parrish
dione by epoxidation of the allylic alcohol, at the quaternary
carbon by the Hutchins procedure137 (NaBH3CN–BF3$
Et2O) (Scheme 82).138

The vicinal diol product was regioselectively desoxygenated
at the C(9)-position by two independent reaction routes. The
first method was based on the elaboration of the C(8) mono-
acetate precursor of a thiocarbonate, which was reduced by
tin hydride using the Barton–McCombie reaction (Scheme
83), whereas the second procedure consisted of a cyclic
thiocarbonate formation, a subsequent regioselective open-
ing of the thionocarbonate ring with methyl iodide and
then lithium aluminum hydride reduction of the iodohydrin
derivative (Scheme 84).138b

3.4.2.5. Miscellaneous syntheses. In a synthesis of
4,9(11)-androstadiene-3,17-dione reported by Schering and
Hoffmann-La Roche, an alkylation of the optically active
tert-butoxy- and methyl-substituted tetrahydroindanone
with 1-chloro-7,7-o-phenylenedioxy-octane-3-one gener-
ated the corresponding diketone. This latter ketone was con-
verted into the desA-steroid via a diene enol ether formation,
as previously described. Methylation of the tricyclic enone
gave predominantly the 10b-methyl compound, which was
readily transformed into the title dione (Scheme 85).139

Overman and co-workers have achieved the construction of
the tetracyclic core of complex cardenolides such as (�)-
ouabain. In their strategy, an optically active cyclopentane
D-ring ester, readily available from (+)-Hajos–Parrish in-
denedione, was linked to an enantiopure A-ring fragment
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via the addition of its a-lithiated sulfone moiety. Subsequent
reductive enolization and aldol cyclization led to the hydr-
indanone and an intramolecular Heck coupling reaction be-
tween an a-sulfenyl enol triflate and a trisubstituted alkene
served as pivotal steps to form the steroid skeleton (Scheme
86).140

In order to obtain 14b-hydroxy steroids, Deslongchamps and
co-workers prepared substituted Nazarov reagents, starting
from a known chiral bicyclic enone, as described in Schemes
87 and 88.141 These were then condensed with derivatives
of (�)-carvone via first an anionic cycloaddition of the cor-
responding enolates followed by a decarboxylation and a
base-catalyzed aldol reaction of the resulting triketones.
The same methodology was applied to the convergent syn-
thesis of other new interesting steroidal backbones (Scheme
89).142

3.4.3. Use of Wieland–Miescher ketone. Van Gool and
Vandewalle examined an alternative approach to hydroxy
trans-hydrindanones from (+)-Wieland–Miescher ketone
and based on a D-ring contraction of the trans-fused deca-
lone intermediate. In contrast to 13-methylated hydrindane
systems, trans-fused decalins are more stable than the cis
isomers that facilitate their access. Indeed, base-catalyzed
equilibration of cis-decalone, obtained by hydroboration
and oxidation, can afford the thermodynamically more sta-
ble trans-decalone. Cleavage of the a-hydroxyketone and
Dieckmann cyclization generated the target molecule as
a precursor of the Inhoffen–Lythgoe-type diol used in the
synthesis of vitamin D metabolites and analogs (Scheme
90).143 A synthesis of new vitamin D3 analogs with a deca-
lin-type CD-ring fragment, prepared starting from the
(S)-Wieland–Miescher ketone, has been described, as out-
lined in Scheme 91.144

The Torgov-like reaction of 2-methylcyclopentane-1,3-di-
one with the allyl bromide derived from the enantiomerically
enriched Wieland–Miescher ketone afforded the (+)-8,14-
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to 13x-androsta-4,8,14-trien-3,17-dione as a mixture of dia-
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chiral center at C(10) to the newly formed center at carbon
C(13) was detected (Scheme 92).145

The Wieland–Miescher ketone has also been used by Kame-
tani and co-workers as a versatile building block for the
stereoselective synthesis of (+)-5a-dihydropregnenolone.
Their approach was first based on the formation of a tetra-
cyclic intermediate, in which the B- and C-rings of the
steroidal system were generated in one step from the opti-
cally active 1-ethenyl-2-[2-(4-methoxybenzocyclobutenyl)-
ethyl]-1-methylcyclohexan-4-ol by an intramolecular
cycloaddition reaction. The trans-fused hydrindane
including the D-cycle of the steroid is generated by a series
of laborious reactions (Scheme 93).146

For the first time, Kametani and co-workers reported the
synthesis of (+)-chenodeoxycholic acid, one of the two
primary bile acids employed in the treatment of gallstones.
The key optically active [2-(benzocyclobutenyl)ethyl]cyclo-
hexane was prepared from the Wieland–Miescher ketone
and the cis,anti,trans-fused D aromatic steroid backbone
was generated during the intramolecular o-quinodimethane
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cycloaddition of the olefinic acylbenzocyclobutene, where
the a-acetoxy group anchored on the cyclohexane ring
directed the stereochemical course of the reaction (Scheme
94). Conversion to chenodeoxycholic acid required D-ring
manipulations and stereoselective introduction of substitu-
ents (Scheme 95).147
A stereo- and regioselective tethered type 2 intramolecular
Diels–Alder reaction was exploited by Shea and co-workers
in their synthesis of an advanced tetracyclic steroid inter-
mediate of the cortical hormone, (+)-aldosterone. The diene
precursor was elaborated from (+)-Wieland–Miescher
ketone using the procedure of Swaminathan and joined to the
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conjugated diester dienophile by a temporary chiral 1,2-diol
silyl acetal tether, which provided control of the p-facial
selectivity. The natural steroid stereochemistry of the four
contiguous stereocenters C8, C9, C13, and C14 was con-
trolled by the (S,S)-hydrobenzoin auxiliary, favoring an
a-approach. Final construction of the D-ring involved a
Dieckmann cyclization–demethoxycarbonylation sequence
(Scheme 96).148 Following the same strategy, a synthesis
of the adrenalcorticosteroid, (+)-adrenosterone, was also re-
alized by this group. However, in this case, the presence of
the sole methyl group at C(13) compared to the bulkier benz-
yloxymethyl group influenced the selectivity of the cycload-
dition process, which was down from 2.7:1 to 3:2 (Scheme
97).149

3.4.4. Enantioselective cyclization of other alkylcyclopen-
tanediones. A number of approaches have made the Hajos–
Parrish-type ketone a starting building block of choice for
the construction of CD-steroid ring fragments, usually
resulting from the addition of methylcyclopentanedione to
a vinyl ketone derivative followed by enantioselective
cyclization of the trione formed. In 1976, Danishefsky and
Cain achieved the construction of the 8-ethylpicolyl indene-
dione through an L-phenylalanine-promoted asymmetric
annulation under Eder, Sauer, and Wiechert conditions. A
Birch reduction of the pyridine ring followed by cyclization
in an alkaline medium led to the cyclohexenone A-ring,
which underwent a vinylogous aldolization with the hydrin-
danone system and liberated 19-nor-steroids and estrone
(Scheme 98).150

An interesting method for the introduction of a phenylsul-
fonyl group at the C(8)-position of trans-hydrindanes was
developed by Wicha and was based on a phenylalanine-
catalyzed enantioselective annulation of 2-methylcyclo-
penta-1,3-dione with phenylsulfanylmethyl vinyl ketone.
By using the protocol described by Hagiwara and Uda (cf.
Section 3.4.1) with (S)-(�)-phenylalanine, (R)-thioindene-
dione was obtained with an ee up to 95.6% after recrystalli-
zation. From a-alkylation of the saturated ester, Wicha could
build the side chain and obtain two essential synthons for the
synthesis of ent-vitamin D, in which the sulfonyl group
S

S

O

O

1. KHMDS / THF → Ph2SiCl2

2. Ph
O

Ph
HO

O

CO2Me
- DMAP - Et3N
/ CH2Cl2

3. 200 °C / PhMe

S

S

O
Si

OPh
Ph

O

CO2Me

O

Ph

Ph

H

H

S

S

O
Si

OPh
Ph

O

CO2Me

O

Ph

Ph

H

H+

3 : 2, 90% yield based on 50% conversion

H

H

H

O

S

S

O
Si

OPh
Ph

O

CO2Me

O

Ph

Ph

H

H

O 25% yield

Scheme 97.



11548 A.-S. Chapelon et al. / Tetrahedron 63 (2007) 11511–11616
N

O

N

O

O

O

O

O

CO2H

NH2

Ph

N

O

O

N

O

OH
OH

H

H

O

O

OH

H

H
O

O

OHHO

OH

H

H

N

O

O
O

O

O

H

H

O

O

H

H

HO
H

Et3N / AcOEt

quant. yield

 / acetonitrile

ee: 86%; 82% yield

ee: 86%; 88% yield

1. H2 - Pd (C)
    HClO4 / EtOH

45% yield

1. NaOH
    / EtOH - H2O

2. - H(+)

1. Jones reagent

ee: 86%; 48% yield

2. H(+) / H2O

NaBH4

2. TsOH / AcOH

1. CH3COBr / Ac2O

2. K2CO3 / MeOH

- HClO4

 / EtOH

Na - NH3

Scheme 98.

OH
PhS Dess-Martin

reagent O
PhS

Ph
NH2

CO2H

H
(R)-(+)

(1S)-(+)-camphorsulfonic acid
- Et3N / DMF

20°C → 55°C (3 d.)

O

O
+ O

O
SPh

71% yield, 89.1% ee

1. m-CPBA / CH2Cl2

82% yield

2. LiAlH4 / THF
3. Jones reagent

O

O2SPh
H

78% yield

(EtO)2P(O)-CH2-CO2Et  - NaH

O2SPh
H

CO2Et

H2 - Pd (C) / EtOH

O2SPh
H

CO2Et

80% yield

97% yield

LDA

→ I

O2SPh
H

EtO2C

75% yield

1. DIBALH
/ CH2Cl2 - PhMe

2. p-TsCl - Et3N
- DMAP / CH2Cl2

3. LiB(Et)3H / THF

/ THF - HMPA

O2SPh
H

85% yield

LDA
/ THF - HMPA
→ MeI

O2SPh
H

CO2Et

75% yield

/ CH2Cl2 - PhMe

O2SPh
H

OH

87% yield

DIBALH

/ DMF - HMPA

Scheme 99.
could serve to couple the Northern portion building block to
an A-ring fragment via a Julia olefination (Scheme 99).151

4. Use of chiral auxiliaries, chiral metal–ligand
complexes or chiral bases

4.1. Use of chiral auxiliaries

Several new routes to enantiomerically enriched steroids
have appeared recently employing chiral auxiliaries to
introduce chirality. In one example, during the total syn-
thesis of 19-nor-steroids, Quinkert observed that an ScN20

reaction of 1,4-dibromobut-2-ene with (�)-bis(8-phenyl-
menthyl) malonate under phase-transfer conditions led to
the vinylcyclopropane as a 98:2 mixture of diastereoisomers.
This latter cycloalkane was then converted into the enan-
tiomerically enriched 2-methyl-3-vinyl-cyclopentanone
through an annulation process promoted by malonic ester/
NaOMe. The diastereoselective Michael addition of its
enolate to a silylated aryl vinyl ketone generated a steroid
precursor, which was readily engaged in a tandem
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photo-enolization–intramolecular Diels–Alder cycloaddi-
tion of the o-quinodimethane intermediate. The dehydrated
cycloadducts with a trans-fused CD-ring were isolated in
60% yield and functional-group transformations achieved
the preparation of 19-nor-steroids (Scheme 100).152 Three
years later, the same authors applied this strategy to the syn-
thesis of (�)-norgestrel and (�)-norethindrone, as depicted
in Scheme 101.153

An asymmetric cyclization by intramolecular Horner–
Emmons olefination of 1,3-cyclopentanedione leading to
the CD-ring system of vitamin D was reported by Mandai
and co-workers. Desymmetrization of the dicarbonyl com-
pound was realized by the use of a chiral phosphono ester,
possessing (�)-8-phenylmenthol as an optically active
auxiliary, with an excellent diastereoselectivity. The trans
BC-ring junction was achieved by deconjugation of the
a,b-unsaturated ester to its b,g-counterpart and subsequent
catalytic hydrogenation of the olefin (Scheme 102).154

During his work directed toward the total synthesis of
steroids via intramolecular Diels–Alder reactions of o-qui-
nodimethanes, Fukumoto investigated the thermolysis of
the corresponding chiral benzocyclobutenes, which have
a C2-symmetric acetal moiety as a chiral auxiliary. The
des-AB-aromatic steroid trans-benzoperhydroindans were
formed with a high diastereoselectivity and an enantiomeric
excess up to 36% (Scheme 103).155

In their approach to the first synthesis of (+)-cortisone, Fuku-
moto and co-workers started from the (R)-(+)-pulegone-
derived chiral 1,3-oxathiane reported by Eliel,156 which
was converted into the diastereomerically pure equatorial
2-acyl derivative. Grignard addition gave the tertiary
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isopropenyl alcohol as a unique stereoisomer and intra-
molecular Diels–Alder cycloaddition of the olefinic benzo-
cyclobutene generated the unique trans A-nor-B-aromatic
steroid. The exo-transition state is favored, due to steric
interactions that allowed the formation of the 18b-methyl
cycloadduct isomer. The natural cortisone was then elabo-
rated from this tricyclic intermediate (Scheme 104).157

To introduce the asymmetry, Nemoto and co-workers re-
placed the chiral 1,3-oxathiane auxiliary by a dimethyl-
dioxolane moiety, accessible from the natural chiral
source, D-mannitol. Diastereoselective vinyl Grignard addi-
tion to the chiral O-isopropylideneglyceroketone prepared
from 1-ethynylbenzocyclobutene and protected (R)-glycer-
aldehyde, thermal electrocyclic ring opening and subsequent
intramolecular [4+2] cycloaddition yielded the target tri-
cyclic steroid-like skeleton having a trans-relative configu-
ration (Scheme 105).158
Fukumoto and co-workers reported the preparation of an
A-nor B-trienic 18,18,18-trifluorosteroid and its enantiomer
as potential intermediates for the synthesis of 18,18,18-
trifluorosteroids. The construction of the tricyclic precursor
involved ring closure by a Diels–Alder reaction of a chiral
olefinic benzocyclobutene. This latter cycloalkene was ob-
tained via a diastereoselective aldol reaction of a (4R,5S)-
4-methyl-5-phenyl-2-oxazolidinone-derived unsaturated
imide with 4-methoxybenzocyclobutenyl-1-acetaldehyde
(Scheme 106). The enantiomeric fluorinated compound
was prepared following the same strategy by using (4S)-
4-benzyl-2-oxazolidinone as a chiral auxiliary (Scheme
107).159

An Evans-type syn-selective asymmetric aldol reaction of
a-bromoacrolein with the boron enolate of 3-chloroacetyl-
4(S)-isopropyl oxazolidinone and a Pd(0)-mediated intra-
molecular Heck-type reaction of a vinyl bromide onto an
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Scheme 107.
a,b-unsaturated ester were used by Chen and Crich to syn-
thesize the diene ester A-ring of the 1a,25-dihydroxyvitamin
D3 (Scheme 108).160

During their studies on polyene cyclization by electrophilic
activation, Johnson and co-workers constructed the Inhof-
fen–Lythgoe diol by means of an asymmetric Lewis acid-
catalyzed bicyclization of an optically active enyne acetal.
The chiral auxiliary was removed by oxidation and base-
assisted retro-Michael elimination. Semi-hydrogenation of
the terminal double bond of the allene occurred from the
more exposed face and gave the Z-isomer. A tandem ene
reaction and stereospecific hydrogenation were carried out
in order to complete the synthesis (Scheme 109).161

Afterward, a stereoselective cation-induced biomimetic poly-
enic tetracyclization of an acyclic tetraenic acetal was ex-
ploited by Johnson and co-workers in their synthesis of
optically active steroids. The (S,S)-2,4-pentanediol-derived
chiral acetal controlled the stereochemistry of the cascade
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process and the presence of a fluorine atom at the pro-C(8) cen-
ter stabilized the intermediate carbocation that enhanced the
effectiveness of the reaction. A fluorotetracycle with natural
steroid configuration was obtained in 38% yield and 93% ee,
together with a mixture of alkenes (32%) (Scheme 110).162

An enantioselective construction of a functionalized cyclo-
pentane derivative, employed as a D-ring precursor of
(+)-estrone methyl ether, was reported by Taber and
co-workers. The reaction sequence included a rhodium(III)-
mediated diastereoselective intramolecular CH insertion of
a chiral bis-homoallyl a-diazo-b-keto ester, prepared start-
ing from (1S,3S)-exo-hydroxy-2(S)-exo-naphthyl-bornane,
followed by a sequential a-methylation, 1,3-ester shift, and
dianion alkylation with 2-(4-methoxybenzocyclobutenyl)-
ethyl iodide. The corresponding decarbomethoxylated
compound underwent an intramolecular Diels–Alder cyclo-
addition to give (+)-estrone methyl ether (Scheme 111).163

Stork and Saccomano showed that intramolecular Michael
addition of the borneol-derived b-keto ester anion to an
a,b-unsaturated ester produced a trisubstituted trans-cyclo-
pentanone, useful for the construction of the D-ring of 11-
ketosteroids and with the correct absolute configuration.164
Completion of the C-ring was realized by dialkylation of
methyl cyanoacetate, leading to the insertion of the C(11)
carbonyl. The Diels–Alder cyclization of the elaborated tri-
enone with concomitant deprotection of the C(17) ketone
was effected with trifluoroacetic acid and provided the tetra-
cyclic intermediate,165 which was converted into adreno-
sterone upon the usual ozonolysis–cyclization sequence
(Scheme 112).166

A rhodium(II) acetate complex-mediated intramolecular cy-
clopropanation of an unsaturated a-diazo-b-keto ester bear-
ing (S)-pantolactone was the key step in the synthesis of
non-racemic vitamin D3 CD-ring synthons developed by
Tanimori and co-workers. Addition of a Grignard reagent
catalyzed by copper iodide was carried out on the major dia-
stereoisomer of the newly formed bicyclo[3.1.0]hexane and
was shown to proceed regioselectively at the methylated car-
bon through cyclopropane ring opening. This manipulation
allowed the direct introduction of the vitamin D3 side chain.
A series of routine reactions furnished the previously charac-
terized cyclopentanone, which underwent a Robinson-type
annulation. Using the same reaction sequence, the opposite
diastereomer was converted into the ent-vitamin CD-ring
synthon (Scheme 113).68a
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A short asymmetric approach to the construction of a trans-
dihydrindanedione was reported by Tsuji and co-workers.
Their synthetic strategy was centered on the formation of a
copper azaenolate, obtained by a sequential lithiation of an
acetone imine of (R)-tert-leucinol methyl ether, copper(I)
transmetallation, and its conjugate addition to 2-methyl-
cyclopentenone. A tin(IV) chloride-mediated reaction of
silyl enol ether with trimethyl orthoformate was suggested
for the introduction of the formyl group and a subsequent
acidic aldol condensation generated the indenedione in
60% ee (Scheme 114).167

As part of their studies on radical cyclization of haloacetals,
Stork proposed an alternative route to trans-hydrindane
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steroid precursors, and particularly the CD system of D
vitamins such as calcitriol. The construction of the Wind-
aus–Grundmann-type ketone hydroxylated at C(25) was
undertaken via a tandem radical cyclization of a mixed
bromoacetal derived from the optically active 3-methyl-2-
cyclohexenol and trapping of the transient carbon radical
by acrylonitrile that controlled the formation of the stereo-
genic center at C(14) and the trans-junction, respectively.
One of the best-known methods for preparing the starting cy-
cloalkenol was the asymmetric hydroboration of 1-methyl-
1,4-cyclohexadiene with diisopinocampheylborane. Ring
closure of the D-ring and introduction of the side chain using
standard transformations completed the synthesis. However,
the absence of reaction details makes these results unwork-
able (Scheme 115).168

The synthesis of (�)-8-azaestrone by Meyers and Elworthy
featured the asymmetric alkylation of (S)-tert-leucinol-
derived formamidine isoquinoline with a b-bromo ether
with 94% ee, hydrazinolysis of the chiral auxiliary, enamine
formation with 2-methyl-1,3-cyclopentanedione to insert the
D-ring moiety followed by cyclization to the tetracyclic
system through intramolecular alkylation, and reduction of
the intermediate iminium salt by treatment with tetrabutyl-
ammonium cyanoborohydride (Scheme 116).169

An interesting ABC intermediate for steroid synthesis was
proposed by d’Angelo and co-workers. Their synthetic
sequence started with the preparation of an optically active
phenanthrone through an asymmetric Michael addition pro-
cess involving chiral imines. Condensation of the secondary
enamine, obtained from both 1-methyl-2-tetralone and (S)-
(�)-a-methylbenzylamine, with methyl vinyl ketone yielded
a bridged ketol, which was then transformed into the target
(S)-phenanthrone in 80% yield with 93% ee. Simple func-
tional-group transformations, in which the trans AB-ring
junction was established during the enone reduction upon
Birch conditions and the trans BC-ring junction by hydroge-
nation of the phenol unit and epimerization, completed the
synthesis of the trans-anti-trans diketone (Scheme 117).170

For the synthesis of 1a,25-dihydroxyvitamin D3, Wilson
developed an attractive route to a new acetylenic A-ring
precursor involving a rhodium-catalyzed intramolecular
cyclopropanation of a homoallyl a-diazo-b-keto ester. The
introduction of the chirality was ensured by the presence of
the chiral auxiliary, 1(S)-3(S)-exo-hydroxy-2(S)-exo-naph-
thyl-bornane. After recrystallization and further transforma-
tions, the resulting bicyclo[3.1.0]hexan-2-one was converted
into the corresponding enyne through vinyl bromide forma-
tion, and then addition of the lithium acetylide to 25-hydroxy
Windaus–Grundmann ketone formed the cyclopropyl-
substituted propargylic alcohol. Its LAH reduction to a
vinylogue of a cyclopropyl alcohol and acid-catalyzed
solvolysis via allylic cation formation afforded calcitriol as
a unique isomer in 64% yield (Scheme 118).171
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A similar enantiomerically pure enyne, obtained either by dia-
stereoselective cyclopropanation of allylic alcohol or through
chiral allylic alcohol-directed cyclopropanation under
Molander’s conditions, was synthesized by Uskoković. The
chirality was introduced by the (R,R)-2,3-butanediol ketal
moiety (Scheme 119) or from (1R)-2-iodo-cyclopenten-1-ol,
generated by Corey’s chiral oxazaborolidine reduction of
the corresponding ketone (Scheme 120). Thus, these building
blocks were readily engaged in the elaboration of calcitriol.172

A cyclopentenone sulfoxide, (S)-2-p-tolylsulfinyl-2-cyclo-
pentenone, the chirality of which is ensured by the presence
of the enantiomerically pure sulfoxide unit, was used by
Posner and Switzer as a Michael acceptor. Asymmetric
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conjugate addition of methoxytetralone enolate led to a mix-
ture of diastereoisomers simplified by oxidation of the sulfi-
nyl group to sulfone. Further transformations including a
McMurry reductive cyclization closed the C-ring and
achieved the construction of the estrone skeleton with a nat-
ural configuration (Scheme 121).173

At the end of the 1930s, Dane’s diene or 6-methoxy-1-vinyl-
3,4-dihydronaphthalene was proposed as a useful and conve-
nient synthon for the synthesis of estrone.5 The same diene
was employed by Carretero and co-workers in a regio- and
diastereoselective Diels–Alder reaction with the previous
optically pure b-keto sulfoxide. The exclusive formation
of the endo-product was realized at �25 �C in DCM with
EtAlCl2 as a catalyst and the subsequent reductive elimina-
tion of the sulfinyl group with Al(Hg) in THF/H2O. In this
case, the CD bicycle cis-junction was preserved, leading to
syn,cis-steroid skeletons (Scheme 122).174

As useful steroid intermediates, optically pure 2,3-disubsti-
tuted cyclopentanone and cyclopentanone enol silyl ether
were synthesized by Posner and co-workers from zinc bro-
mide-mediated vinyl conjugate addition to the chiral cyclo-
pentenone sulfoxide and reductive cleavage of the sulfinyl
group. Alkylation of these compounds by a suitable o-quino-
dimethane precursor followed by intramolecular Diels–
Alder reaction should afford 19-nor-steroid cycloadducts
(Scheme 123).175

Diastereoselective addition of (E)- and (Z)-crotylsilanes to
chiral 2-alkoxycarbonyl-2-cyclopentenones was reported
by Pan and Tokoroyama and used for the preparation of
MeO

O

MeO

O

OO2S
Tol

H

H

MeO

O

O
O2S

Tol

H

H

Br
MeO

O

O

H

H

MeO

O

H

H

MeO

O

H

H

H

1. LDA / THF
→ Me3SiCl

O
S
O

Tol

2. MeLi

→

3. m-CPBA 76% yield

1. t-BuOK / t-BuOH
2. NaH / DME

→ MeI

1. MeLi - CuI
    / THF - Et2O

57% yield

→

71% yield

2. TiCl3 - Zn (Ag)
    / DME

Me2S
1. O3 / MeOH

→

50% yield

Et3SiH - CF3CO2H

90% yield

/ PhH

Scheme 121.

MeO

O
S
O

Tol
EtAlCl2

MeO

H

H

Tol-OS O

MeO

H

H

Tol-OS O

MeO

H

H

Tol-OS O

MeO

H

H

H O

+
/ CH2Cl2

>98:2, 93% yield

+

Al(Hg), THF - H2O

(S)-(–)

Scheme 122.

O
S
O

Tol
→ HMPA - MeI

→ MgBrZnBr2

O
S
O

Tol

→ Me3SiCl - Et3N

OSiMe3

2. Me2CuLi
1. Al-Hg

MeO

O

H

H

H

Scheme 123.



11558 A.-S. Chapelon et al. / Tetrahedron 63 (2007) 11511–11616
EtO2C

OO

R*O2C

Ph

O

O2C SiMePh2+
TiCl4

CH2Cl2

95% de

1. EtOH - H(+)

2.
O / MeOH

3. N H
/ PhH

OHHO - H(+)

/ PhH1.

2. LiAlH4 / Et2O
3. MsCl - Et3N

/ CH2Cl2

MsO

58% yield

O

O

O

O

LiAlH4

 / Et2O
1. (C6H11)2BH / THF

3. Ph3PCH-CHMe2

O

O

2. H2SO4 - H2O / AcOH

2. PCC - AcONa / CH2Cl2

90% yield 42% yield

O 83% yield

1. H2 - Pd (C) / EtOH

- MeONa

Scheme 124.
enantiopure des-AB-cholest-8-en-one, a valuable intermedi-
ate for vitamin D3 synthesis. The reaction between 2-[(1S,
2R,5S)-(+)-8-phenyl-menthoxycarbonyl]-2-cyclopentenone
and E-methydiphenylcrotylsilane afforded the disubstituted
cyclopentanone with excellent diastereoface selectivity
(3R) and erythro extracyclic selectivity. A construction of
the C-ring by Robinson annulation, degradation of the
menthoxy-carbonyl group, and extension of the side chain
completed the synthesis of the chiral steroid CD-ring
synthon (Scheme 124).176

Shimizu and co-workers have synthesized a potent 25-hy-
droxyvitamin D3 chiral cyclopentenone synthon by reduc-
tive cleavage of a norbornan-6-one-2-carboxylate, as
described in Scheme 125. The optically pure norbornane
skeleton was constructed by an asymmetric Diels–Alder
cycloaddition reaction with a chiral a,b-unsaturated N-acyl-
oxazolidinone.177

A clever synthesis of Lythgoe allylic phosphine oxide and
its most important dienoate intermediate was proposed by Pos-
ner and Kinter. The key stage was a Yamamoto’s ‘MAD’
Lewis acid-promoted highly stereocontrolled [4+2] cycload-
dition between 3-sulfonyl-2-pyrone and an enantiomerically
pure vinyl ether. The resulting bicyclic lactone was isolated
in 93% yield with a 98:2 ratio of endo diastereoisomers. A se-
quence of trivial transformations resulted in the formation of
a correctly substituted allylic alcohol. The C(6) and C(7)
carbon atoms were introduced together via a new sulfinyl or-
thoester Claisen [3,3]-sigmatropic rearrangement and subse-
quent pyrolytic 1,2-elimination of sulfoxide (Scheme 126).178

Another route to the non-rearranged intermediate allylic al-
cohol was found by Posner and co-workers by exploiting the
Diels–Alder reaction with 2-pyrones and vinylic ethers,
which involved a double stereodifferentiation process.
Cycloaddition of enantiomerically pure 2-pyrone (S)-lactate
with the appropriately matched enantiomeric form of the
NMR shift reagent, (�)-Pr(hfc)3, produced almost exclu-
sively the two bicyclic endo lactones with 96% de (Scheme
127).179 Similar results were obtained by using (R)-(+)-
Binol-TiCl2(O-i-Pr)2 as a chiral non-racemic Lewis acid
with the commercially available methyl-2-pyranone-3-carb-
oxylate and various enol ethers (Scheme 128).180

As part of a program directed toward the synthesis of C(2)-
substituted vitamin D analogs like ED-71 and ED-120,31e
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A-ring analogs of 1a,25-dihydroxyvitamin D3 via a stereo-
controlled Lewis acid-promoted intramolecular [4+2] cyclo-
addition of the (S)-pyrone fluorovinyl silaketal elaborated
from the enantiomeric chiral auxiliary (R)-1,3-butanediol.
The successive opening of the silaketal ring and the bicyclic
lactone with spontaneous decarboxylation and concomitant
conjugation of the double bond gave the tetrasubstituted cy-
clohexene. A two-carbon homologation of the intermediate
allylic alcohol was performed through a Claisen rearrange-
ment of the sulfinated orthoester followed by thermal sulf-
oxide extrusion and photochemical isomerization of E to
Z-dienoate. Established reactions afforded the enantiopure
phosphine oxide A-ring synthon. A fluorinated vitamin D
analog was then reached from a Lythgoe-type coupling
with the (+)-CD-ring ketone (Scheme 129).181

An elegant chiral synthesis of the A-ring synthon of 1a,25-
dihydroxyvitamin D was described by Shimizu and co-
workers and involved the formation of the two stereogenic
centers C(1) and C(3) by two successive asymmetric Braun
aldol reactions of each enantiomer of the 1,2,2-triphenyl-
ethan-1,2-diol-derived chiral acetate with a-bromoacrolein.
At this stage, the stereoselective conversion of the acyclic
adduct, 8-bromo-2,8-nonadienoate, into the exocyclic diene
system was realized by a palladium-catalyzed intramolecu-
lar Heck reaction. It should be mentioned that, during the
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cyclization step, the (E) double bond changed to a (Z) con-
figuration, as desired (Scheme 130).182

A range of toxic steroids, named cardenolides, were consid-
ered as interesting cardiotonic agents. In 2002, Deslong-
champs and co-workers reported the synthesis of their
tetracyclic skeleton possessing unusual hydroxylated cis
AB- and CD-ring junctions by anionic polycyclization.
The synthetic approach started with the elaboration of an
enantiopure brominated Nazarov reagent obtained by the
diastereoselective addition of a higher-order cuprate derived
from 3-bromofuran to the a,b-unsaturated b-keto ester of
a borneol chiral auxiliary (Scheme 131). A double Michael
cycloaddition between the previous Nazarov reagent and
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a chiral cyclohexenone, obtained by desymmetrization of
4-silanoxycyclohexanone and resolved by flash chromato-
graphy, allowed the construction of the cis-fused AB-ring
unit. Then, reduction of the bromide with samarium(II)
iodide and aldolization with the cyclopentanone produced
the tetracyclic product (Scheme 132).183

As shown by Santelli and co-workers, diallylation of
1,2-diacetals derived from 2,3-butanedione by 1,8-bis-
(trimethylsilyl)-octa-2,6-diene (BISTRO) followed by a
pinacol-type rearrangement generated 1-acetyl-1-methyl-
2,5-divinylcyclopentanes as a mixture of meso- and DL-iso-
mers. The use of a mixed ketal obtained from methanol
and (+)-1-phenyl-1,2-ethanediol gave access to the non-
racemic DL-building block, which was readily engaged in
a synthesis of unnatural 12-oxosteroids involving intramo-
lecular o-quinodimethane cycloaddition as a key step. The
steroid precursor was formed by alkylation of a b-keto ester
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enolate with a racemic iodobenzocyclobutene, as outlined in
Scheme 133. Both cycloadducts exhibited a cis CD-ring
junction and the BC cis-fused major isomer resulted from
an endo transition state.184 In a recent paper, this research
group also reported that the addition of BISTRO to succinic
anhydride afforded a racemic DL-spirolactone, the acylation
of which with (�)-bornyl carbonate operated a kinetic reso-
lution and yielded the two expected lactones with diastereo-
selectivities up to 80:20. These compounds served as
precursors to non-racemic C-11 functionalized estrane
derivatives such as 11a-alkoxycarbonyl-11b,13b-(g-carbo-
lactone)-17b-vinylgonatri-1,3,5(10)-enes (Scheme 134).185

4.2. Use of chiral metal–ligand complexes

Some representative methods involving chiral metal organic
ligand catalysts have been reported to elaborate different
steroid building blocks. In 1984, Takahashi and co-workers
proposed the use of lithium aluminum hydride in the pres-
ence of Darvon alcohol for the asymmetric reduction of
a propargylic ketone. The resulting optically pure alcohol
was modified to (R)-vinyl iodide and used in the preparation
of (+)-(1R)-acetyl-(7aR)-methyl-4-hydroinden-5-one, a chi-
ral steroid CD-ring synthon. The key steps were the enantio-
selective Michael addition of an alkenylcopper/phosphine
complex, derived from the (R)-vinyl iodide, to 2-methyl-2-
cyclopentenone and the subsequent conjugate addition of
the resultant enolate to 3-trimethylsilylbutenone (Scheme
135).186

In 1992, the Hoffmann-La Roche group reported an asym-
metric synthesis of a key 1a,25-dihydroxyvitamin D3 A-
ring synthon, which utilized a highly stereoselective intra-
molecular carbonyl-ene reaction to set up the proper config-
uration of the hydroxyl group at C(1) and the (Z)-double
bond. The requisite hydroxylated d,3-unsaturated aldehyde
was elaborated from a Mikami asymmetric ene reaction of
methyl glyoxylate with 4-methylene-tetrahydropyran and
cyclized in the presence of methoxymethylaluminum chlo-
ride to give a 10:1 mixture of isomeric alcohols. Allylic ox-
idation of the dihydropyran ring provided the lactone
intermediate, which was degraded to form the desired allylic
alcohol (Scheme 136).187 Later, a sequence of regioselective
O
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propiolate-ene reaction of a homoallylic alcohol followed by
catalytic enantioselective Sharpless epoxidation of the re-
sulting allylic alcohol and catalytic enantioselective carbon-
yl-ene cyclization was proposed by Mikami to prepare the
A-ring of the 19-nor-22-oxa and 2-methyl-19-nor-22-oxa vi-
tamin D3 analogs (Scheme 137).188,189

Hatakeyama developed an efficient alternative synthesis
of the A-ring allylic phosphine oxide in nine steps and
23% overall yield from the commercially available 2,2,6-
trimethyl-4H-1,3-dioxin-4-one. The first aldol reaction
between a cyclic ketene acetal and acrolein catalyzed by
Carreira’s chiral titanium(IV) complex190 was carried out
according to Vandewalle’s work191 and led to the corre-
sponding allylic alcohol with a high 97% ee, a useful inter-
mediate from which Vandewalle had already prepared the
enyne building block required in the Trost approach. The
conjugate addition of lithium diphenylphosphine oxide to
a vinyl ketone derivative and triflation of the formed enolate
allowed the stereoselective construction of the enol triflate,
which underwent a palladium-catalyzed Heck-type cycliza-
tion. Photochemical isomerization of the product to the
(Z)-isomer furnished the A-ring synthon (Scheme 138).191

Moreover, the enyne building block required in the Trost ap-
proach was prepared by Vandewalle starting from a similar
enantiomerically enriched allylic alcohol (Scheme 139).192

Mouriño and co-workers synthesized the 3-deoxy-2,25-di-
hydroxyvitamin D analog starting from an optically active
enynol. The enantioselective approach to the A-ring synthon
involved a catalytic asymmetric Keck allylation and an intra-
molecular Heck cyclization of a (Z)-vinyl iodide as the key
steps. A high enantiomeric excess (97%) was obtained
when the allylation reaction was carried out at 0 �C with
allyltributylstannane and 10% of the catalyst (R)-Binol/
Ti(O-i-Pr)4 2:1 (Scheme 140).193

A furan approach to the synthesis of the A-ring of vitamin D
analogs was proposed by Miles and Connell. In this work,
the known furanyl ketone precursor was reduced using
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Noyori’s ruthenium(II) asymmetric transfer hydrogenation
to give the corresponding alcohol in 96% ee. Oxidation of
the silyl-protected derivative by peracetic acid buffered
with NaOAc generated the g-hydroxybutenolide. A three-
step strategy based on the Peterson olefination was devel-
oped to complete the preparation of the desired (Z)-dienol
(Scheme 141).194

Quinkert and co-workers established the use of Dane’s diene
by carrying out a chiral Lewis acid-catalyzed Diels–Alder
reaction with 3-methyl-cyclopent-3-ene-1,2-dione. In the
presence of TiCl2(O-i-Pr)2 as Lewis acid modified by the
optically active Seebach TADDOL ligand, the expected
cis-hydrindane cycloadduct was isolated in 65% yield and
93% ee.195 Base-promoted isomerization of the 2-cyclopen-
tenone steroid D-ring to 3-cyclopentenone followed by
catalytic hydrogenation of the styrene moiety generated
the trans-fused bicyclic system. Ionic hydrogenation using
Et3SiH/CF3CO2H and BBr3 ether deprotection furnished
(+)-estrone with 99.7% ee (Scheme 142).196

A new oxazaborolidinium cationic catalyst, recently devel-
oped by Corey, was found to be an efficient chiral Lewis
acid for asymmetric [4+2]-cycloaddition between Dane’s
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diene and a,b-unsaturated ester aldehydes. As shown in
Scheme 143, the Diels–Alder reaction proceeded with high
enantioselectivity (94% for endo) and the resulting
cycloadduct was readily converted into (+)-estrone by aldol
cyclocondensation and stereoselective reduction of the
C(14)–C(15) and C(8)–C(9) double bonds of the tetracyclic
dienone intermediate. An access to the important third-
generation oral contraceptive, desogestrel, was also
proposed.197

A tandem asymmetric allylic substitution/Heck ring-closure
reaction was employed by Soorukram and Knochel for the
construction of the enantiomerically enriched Torgov diene,
a suitable precursor of (+)-estrone. The chirality was
introduced via a CBS reduction of the iodo derivative of
4-hydroxy-3-methyl-2-cyclopent-2-en-1-one and the qua-
ternary carbon center was elaborated by using a Cu(I)-
mediated anti-SN20 substitution (Scheme 144).198

Nemoto and Ihara proposed a different strategy for the enan-
tioselective synthesis of the natural (+)-equilenin, based on
two cascade ring-expansion reactions, which constituted
the key steps of this approach. The first reaction was
reported as a chiral (R,R)-(salen)Mn(III) complex-catalyzed
asymmetric epoxidation of cyclopropylidene and its enan-
tiospecific rearrangement, and the second as a palladium(II)-
mediated cascade reaction of the vinylcyclobutanol,
including ring expansion-insertion steps (Scheme 145).199
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Wicha reported the preparation of an optically pure CD-ring
side chain fragment of 24,25-dihydroxyvitamin D3 by using
a tandem Mukaiyama–Michael conjugate addition of a chiral
ketene acetal with 2-methylcyclopent-2-en-1-one and
thiophenylmethyl vinyl ketone. The required ketene acetal
was accessible by the reduction of 2,2-dimethylcyclo-
hexan-1,3-dione by baker’s yeast or the appropriate oxaza-
borolidine/borane complex reagent. The stereochemistry of
the first addition was consistent with a like attack on the
cyclopentenone system, the facial selectivity of which was
influenced by the C(24) stereogenic center. The second
addition delivered the Nazarov-type reagent exclusively
anti to the C(17) center. After annulation, a remarkable
double-hydride reduction of the C(21) tosylate and the 3b-
hydroxy vinylsulfone led to the trans-fused bicyclic system
(Scheme 146).200,201
Asymmetric hydrogenation of a b-diketone such as 1,5-
dichloropentane-2,4-dione in the presence of a cheap
ruthenium–optically active phosphine complex catalyst led
to the C2-symmetric (2S,4S)-1,5-dichloropentane-2,4-diol,
which could be transformed into the corresponding
(2S,4S)-diepoxypentane. This latter alkane was used by Van-
dewalle as a starting material for short alternative syntheses
of A-ring precursors for the hormonally active 1a,25-di-
hydroxyvitamin D3 and the 19-nor-analogs (Schemes 147
and 148).191,202

4.3. Use of chiral bases

A chiral lithium amide base-desymmetrization of 4-(tert-
butyldimethylsiloxy) cyclohexanone allowed Parker and
Dermatakis to prepare the corresponding (�)-trans-



11567A.-S. Chapelon et al. / Tetrahedron 63 (2007) 11511–11616
OO OHO

m-CPBA
- NaHCO3

O
HO

O

MeO OMe
,TsOH t-BuS

O
OO

t-BuS
O

OOSiMe3

O

O
O

Me3SiO

O
t-BuS

H

O
PhS O

O

O

O
t-BuS

t-BuS t-BuS

t-BuS

O

O
O

O

O

PhSPhS

O

82% yield

95% ee, 50% yield

Saccharomyces

cerevisiae 

1. t-BuSH - AlMe3

2.

1. LDA / THF

1. Ph3C(+)(–)SbCl6

2.

3.

+

3:1, 55% yield

2. Me3SiCl/ CH2Cl2

OO

N B
O

n-Bu

Ph
Ph

O
BH

O

cat.

+

/ PhMe

H

OHO

 / CH2Cl2

O
O

O

O

PhS

O

O
O

O

O
PhS

O
OTsO

HO
PhSO2

PhSO2
H PhSO2

H

84% yield

1. DIBALH

36% yield

Amberlyst® 15

80% yield

2. TsCl - Et3N

O
O OH

OH

KOH
/ MeOH

/ CH2Cl2

/ MeOH

3. m-CPBA

LiAlH4

 / THF

Scheme 146.
bromoketone, which was transformed in a few steps into the
target enyne A-ring synthon of 1a-hydroxyvitamin D
(Scheme 149).203 Taking advantage of this enantioselective
desymmetrization reaction, Gouverneur prepared the
1a-fluoro A-ring dienol, a known key intermediate for the
synthesis of 1a-fluoro vitamin D3 analogs. The novel key
features of this approach included a palladium-mediated
C–C coupling for the preparation of an advanced dienyl-
silane intermediate and a substrate-controlled diastereo-
selective electrophilic fluorodesilylation (Scheme 150).204
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5. Sharpless epoxidation of allylic alcohols
and dihydroxylation of olefins

Formation of the enantiomerically active des-AB trienic ste-
roid was realized by thermolysis of an optically pure alkenic
benzocyclobutene. From 1-cyano-4-methoxybenzocyclo-
butene, Nemoto and Fukumoto prepared the trans primary
allyl alcohol, which was enantioselectively epoxidized
according to Sharpless methodology. Introduction of the
dienophile moiety was performed by regio- and stereoselec-
tive epoxide ring opening involving nucleophilic addition of
the isoprenyl Grignard in the presence of copper(I) salts.
Thermal cyclization of the acetonide gave the trans-fused
adduct in 98% yield (Scheme 151).205

A stereoselective epoxy alcohol-initiated cationic poly-
alkene cyclization, prompted by Johnson’s biomimetic
approach, was developed by Takano and co-workers and
exploited for the synthesis of the Inhoffen–Lythgoe diol.
The starting epoxy alcohol was accessible from the corre-
sponding acyclic allylic alcohol by Sharpless asymmetric
epoxidation and the intramolecular nucleophilic opening of
the epoxide took place upon treatment with SnCl4 to give
the bicyclic allene diol with a trans-junction. Cyclization of
the (Z)-epoxy alcohol showed a higher diastereoselectivity,
compared with the corresponding (E)-isomer. Functional-
group manipulations generated the expected hydrindanol
(Scheme 152).206

Stork and co-workers performed a stereoselective allylic ep-
oxide cyclization to a lactone derivative for the construction
of a CD-trans indanone system. For the formation of the
optically pure lactone, it was necessary to start with the
enantiopure allylic epoxide made by Sharpless epoxidation
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of the allylic alcohol, and to perform an intramolecular
epoxide ring opening by the ester enolate. The completion
of the 25-hydroxylated Windaus–Grundmann ketone from
the bicyclic lactone is shown in Scheme 153. However, the
synthetic sequence has not been reported in detail.168a,207

During his studies on ent-vitamin D synthesis and its ana-
logs, Wicha realized the Sharpless asymmetric dihydroxyl-
ation of methyl 5-methyl-4-hexenoate with the commercially
available AD-mix-a to give directly the hydroxy g-lactone.
Further transformations afforded the homochiral (S)-ketene
acetal, which underwent a diastereoselective tandem
Mukaiyama–Michael addition with 2-cyclopentenone and
1-(phenylthio)but-3-en-2-one followed by vinyl sulfone reduc-
tion, already reported in Section 4, as the key steps (Scheme
154). The trans-hydrindane sulfone and the A-ring aldehyde
were then coupled according to Julia’s olefination reaction
(Scheme 155).208 Unfortunately, the resulting 1a,25-di-
hydroxyvitamin D3 enantiomer did not show any significant
affinity to the vitamin D receptor.209
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An alternative route to the d,3-unsaturated aldehyde, previ-
ously employed in the synthesis of the A-ring allylic alcohol
and depicted in Scheme 136, was proposed by the same au-
thors. Their approach relied on two key steps, including
Sharpless asymmetric epoxidation of the allylic alcohol gen-
erated from the ene reaction of 4-methylene-tetrahydropyran
with ethyl propiolate and hydroxyl-assisted regioselective
epoxide reduction with sodium bis(2-methoxyethoxy)alumi-
num hydride, which sets up the 3b-hydroxyl function
(Scheme 156).188

Later, Wicha and co-workers reported another synthesis of
the A-ring dienol synthon that started from 3-triphenylsilyl-
glycidol, a substrate easily obtained by Sharpless epoxida-
tion of the corresponding allylic alcohol. Intramolecular
Heck cyclization of the advanced iododiene intermediate
led directly to the target compound (Scheme 157). A similar
strategy was successfully applied to an acyclic precursor
prepared from L-(+)-malic acid.210

In Shimizu’s approach shown in Scheme 158, the key inter-
mediate dienoate for the synthesis of the 1a-hydroxyvitamin
D3 A-ring was synthesized from (E)-8-bromo-2,8-nona-
dienoate using also a stereoselective palladium-catalyzed in-
tramolecular cyclization. The acyclic compound was easily
accessible via Sharpless epoxidation of an allylic alcohol
and reductive cleavage of the alkenyloxirane that established
the absolute stereochemistry at C(3).182

Trost proposed an original strategy to elaborate simulta-
neously the A-ring and the trienic system of 1a-hydroxy-
vitamin D3, which consisted of performing a palladium-
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catalyzed alkylative tandem carbometalation–cyclization
of a protected 1,7-enynediol211 with the (E)-vinyl bromide
derivative of Windaus–Grundmann ketone. The optically ac-
tive starting acyclic enyne was obtained by Sharpless kinetic
resolution of the racemic allylic alcohol, as presented in
Scheme 159.212

Alternatively, 1a,25-dihydroxyvitamin D3 could be synthe-
sized by means of a Suzuki–Miyaura coupling between the
corresponding bromodiene A-ring and alkenylboronate
CD-ring fragments. Starting from the optically active epi-
chlorhydrin, Sato prepared the A-ring precursor, in which
the 1a-hydroxyl group was introduced by a Sharpless
asymmetric epoxidation and the cyclic dienic system was
constructed using a sequence of titanacyclization of the
intermediate enyne and bromination followed by HBr elim-
ination (Scheme 160).213

To obtain 6-methyl analogs of vitamin and previtamin D,
Mouriño and co-workers based their approach on a
zirconium-promoted cyclization–iodolysis of an acyclic
1,7-enyne as a key step. As mentioned previously, the linear
precursor of the A-ring iododiene was subjected to Sharpless
kinetic resolution, leading to the enantiomerically pure
enynol. After HI elimination, a Negishi-type cross-coupling
of the vinyl iodide with an alkenylzinc reagent bearing the
CD-ring-side chain of vitamin D3 provided the expected
triene (Scheme 161).214
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6. Use of molecules from the chiral pool

6.1. Use of camphor derivatives

Camphor is, undeniably, the cheapest compound of the chiral
pool.215 Somewhat surprisingly, there only two examples of
steroid approaches involving camphor derivatives. In 1977,
chiral intermediates for the enantioselective synthesis of ste-
roids were elaborated by Stevens and co-workers starting
from (�)-borneol as a source of (�)-camphor. The displace-
ment of (�)-9-iodocamphor with an excess of the sodium salt
of dimethyl malonate and its subsequent decarboxylation
gave rise to the homologated keto ester. This latter compound
underwent a sequence of reaction steps involving a Beckman
fragmentation of the oxime ester to a cyano ester and a hybrid
of the Zeigler and Dieckmann condensations. Treatment of
the resulting trans-hydrindane with methyl vinyl ketone, re-
moval of the cyano group, and then aldol condensation
afforded the (+)-BCD tricycle as a potent precursor of corti-
sone (Scheme 162).216a Alternatively, the cyano ester derived
from (+)-9-iodocamphor was regioselectively oxidized with
selenium dioxide to afford the unstable aldehyde, which was
readily reduced by sodium borohydride to an allylic alcohol
and converted into the related sulfone. Treatment with so-
dium methoxide liberated the desired bicyclic hydrindanone
(Scheme 163).216b,c

In a similar approach, Money and co-workers reported the
enantioselective synthesis of estrone by ring cleavage of
(+)-9,10-dibromocamphor. The resulting hydroxy acid was
converted into the intermediate keto aldehyde, which under-
went an intramolecular aldol condensation, generating the
optically active trans-hydrindenone fragment. Regioselec-
tive conjugate addition of m-methoxybenzylmagnesium
chloride to the vinylogous amide, stereoselective reduction
of the cross-conjugated trienone with Li/NH3 followed by
(–)-borneol
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ozonolysis provided the known diketone. Subsequent acid-
mediated cyclodehydration of the diketone, catalytic hydro-
genation, and demethylation completed the approach to (�)-
estrone (Scheme 164). Access to natural (+)-estrone would
require the use of (�)-3-bromocamphor, which could be ob-
tained by oxidizing (�)-borneol to (�)-camphor followed by
bromination in acetic acid.217 The introduction of a side
chain unit present in a variety of steroids into the C(20)
position was also considered by the authors. Starting from
the previous D-ring synthon hydroxyl acid and, after
a two-carbon homologation, cyclization of the correspond-
ing diacid with trifluoroacetic anhydride followed by a meth-
anolic work-up produced the hydrindenone ester, in which
the chiral centers at C(13) and C(17) originated from (+)-
9,10-dibromocamphor. Diastereoselective alkylation of the
ketal ester enolate with 5-iodo-2-methylpent-1-ene on
the less hindered face and reduction with LiAlH4 provided
the hydroxy ketal. Finally, further functional-group manipu-
lations led to the hydrindenone bearing the steroidal side
chain unit (Scheme 165).218
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6.2. Use of carvone

Carvone is currently the starting material of choice for the
construction of the A-rings of the hormonally active
1a,25-dihydroxyvitamin D3 and its analogs. The fact that
both enantiomers are commercially available allowed the
facile preparation of the natural A-ring and its optical image.
In 1986, Baggiolini and co-workers from Hoffmann-La
Roche were the first to achieve the chemical total synthesis
of the optically active 1a,25-dihydroxycholecalciferol and
1a,25-dihydroxyergocalciferol involving the Lythgoe allylic
phosphine oxide approach. An efficient 14-step procedure
for the A-ring synthesis was proposed starting from (S)-
(+)-carvone and with a 21% overall yield. The 1a-hydroxy
function was readily introduced by stereospecific epoxide
ring opening, while the other 3b resulted from an oxidative
cleavage of the isopropenyl side chain and a subsequent
Baeyer–Villiger rearrangement. One of the major difficulties
has been the dehydration of the tertiary allylic alcohol to an
exo-methylene group that could be carried out only with the
Martin’s sulfurane reagent. After photoisomerization, the di-
enoate ester was derivatized to the A-ring allylic phosphine
oxide. The corresponding lithium carbanion was then added
to the 25-hydroxylated Windaus–Grundmann ketone, which
underwent a Wittig–Horner reaction and afforded 1a,25-
dihydroxyvitamin D3 (cf. Section 3.4.2.4) (Scheme 166).219

The 1a-fluoro analogs were also prepared by modifications
of the preceding procedure, as depicted in Scheme 167.
The key steps in the synthesis were the epimerization of
the trans-acetoxy alcohol with (diethyl amido)sulfur trifluor-
ide (DAST) to the cis-regioisomer and the stereospecific
fluorination of the free alcohol with complete inversion of
configuration.220

Radinov and co-workers improved considerably the seminal
synthesis of the A-ring phosphine oxide by employing two
novel efficient synthetic transformations. While oxidative
degradation of the isoprenyl substituent was accomplished
in three steps, the desired 3b-alcohol could be obtained by
a one-pot procedure involving ozonolysis, Criegee rear-
rangement of the peroxyester intermediate,221 and saponifi-
cation of the acetate. An efficient chemo- and stereoselective
palladium-catalyzed isomerization of the 1a-dienoxide
(E)-ester led to the 1a-allylic alcohol with an exocyclic
double bond.222 Then, triphosgene chlorination and subse-
quent substitution with diphenylphosphine oxide223 gave
the A-ring phosphine oxide in only nine steps (Scheme 168).

The strong biological activity of 1a-fluoro-25-hydroxyvita-
min D3 stimulated Radinov’s group to provide an efficient
synthesis of the 1a-fluoro A-ring phosphine. Their approach
centered on a stereoselective directed epoxidation of a ter-
tiary allylic alcohol, a palladium-catalyzed isomerization
of a diene oxide to a dienol followed by a fluorination with
DAST (Scheme 169).224

Masciadri and co-workers reported another route to the fluo-
rinated A-ring precursor on a multigram scale that started by
a regioselective syn-epoxidation of (+)-cis-carveol. Fluorine
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was introduced by trans-diaxial ring opening of the epoxide
with NBu4NH2F3 and the dienoate ester was elaborated from
an advanced allylic alcohol intermediate via a sequential SN

0

substitution with cesium phenylselanylacetate, Ireland–
Claisen-type rearrangement of the resulting ester, and elimi-
nation of phenyl selenoxide (Scheme 170).225

For their part, Takano and co-workers showed that the key
A-ring allylic phosphine oxide could be obtained by the
use of a diastereoselective chromium(II)-mediated addition
of an allylic iodide derived from (R)-(�)-carvone to
aldehyde as a key step. The crucial construction of the con-
jugated diene A-ring part was then achieved by stereo- and
regioselective dehydration of the resulting homoallylic alco-
hol through a trans elimination process (Scheme 171).226

Two years later, the same authors investigated a new conver-
gent approach to the synthesis of (+)-1a,25-dihydroxy-
vitamin D3 relying on a chromium(II)-mediated coupling
of the preceding intermediate allyl iodide and the a,b-
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unsaturated aldehyde CD-ring fragment. The coupling re-
action was highly diastereoselective, but the subsequent
copper(II) sulfate-catalyzed dehydration converted the re-
sulting alcohol into a mixture of vitamin D3 metabolites
with conjugated and unconjugated trienes (Scheme 172).227

Still from (S)-(+)-carvone, Baggiolini and co-workers devel-
oped a stereospecific synthesis of Lythgoe’s A-ring di-
hydroxyaldehyde for the preparation of 1a-hydroxylated
vitamin D3 derivatives by using a Julia olefination proce-
dure. The known carvone epoxide underwent a Darzens con-
densation followed by ozonolysis of the isopropenyl side
chain and Criegee rearrangement of the intermediate
peroxyester. Finally, a copper chromite-assisted decarboxyl-
ation and rearrangement of the epoxyglycidic acid generated
both a,b-unsaturated aldehyde and 1a-hydroxy functions
(Scheme 173).228

More recently, Mouriño and co-workers proposed an original
strategy to access the A-ring synthon phosphine oxide, which
involved an oxidative cleavage of a protected dihydroxy
epoxide. The related acyclic dicarbonyl compound was
further transformed into the familiar dienoate ester via a
sequential Wittig reaction, vinyl triflate formation, and
palladium-catalyzed cyclization–carbonylation (Scheme
174).229

Earlier, Castedo and co-workers were interested in the syn-
thesis of a Lythgoe-type enyne diol, which could advanta-
geously be coupled with a CD-bicyclic fragment such as
the Windaus–Grundmann ketone. Starting from (S)-(+)-
carvone, conversion of the derived ketone epoxide into
homoallylic alcohol was accomplished using a combination
of Wharton’s reaction and [2,3]-sigmatropic rearrangement
of a lithiated allylic stannyl ether. Hydroxyl-directed epoxi-
dation of the transposed product restored the chirality at
position C(1) and a chain extension to the enyne involved
a Corey–Fuchs procedure (Scheme 175).230

In their approach, Okamura and co-workers utilized as the
key steps a stereoselective lithium acetylide addition to the
carvone carbonyl group, a selective ozonolysis/Criegee
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rearrangement, and an SmI2/palladium-mediated reductive
elimination of the epoxy propargyl acetate with concomitant
epoxide ring opening to prepare the enyne diol (Scheme
176). From the latter diol, it was possible to synthesize
1a,25-dihydroxy-9,11-dehydrovitamin D3 by coupling
with the 9,11-dehydro bicyclic enone followed by stannyl-
cuprate SN20 displacement of the propargyl benzoate,
selective fluorodestannylation of the vinylallene and a
thermal [1,5]-sigmatropic hydrogen shift. The final oxy-
mercuration–demercuration reaction then afforded the target
molecule (Scheme 177).231 Analogs of vitamin D3 bearing
an amino group at the C-1 or C-3 position have been pre-
pared by Gotor, starting from the previous enyne acetate
A-ring fragment.232
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An alternative method for coupling the A- and CD-ring
fragments, developed by Mouriño233 and applied by
Okamura,234 comprised a palladium-catalyzed cross-
coupling reaction of the enynol with the CD-ring triflate.
The corresponding trihydroxydienyne could undergo cata-
lytic hydrogenation and thermal [1,7]-sigmatropic hydrogen
shift/isomerization (Scheme 178).

In 2000, Srikrishna and co-workers suggested a direct
approach to the opposite enantiomer of the enynol A-ring
precursor starting from (R)-(�)-carvone. The acetylenic
side chain was conveniently introduced by employing
a 1,3-enone transposition methodology and the controlled
ozonolysis/Criegee rearrangement sequence led to the corre-
sponding 1a,3a-A-ring. The Mitsunobu inversion of the
3a- into 3b-alcohol should allow the formation of the ent-
calcitriol (Scheme 179).235

Finally, a short synthesis of an enantiomerically pure tetra-
cyclic CD cis coupled D-homo steroid skeleton was devel-
oped by de Groot and co-workers. Their strategy relied on
a TrSbCl6-mediated Mukaiyama–Michael reaction of the
silyl enol ether of methoxytetralone with (R)-(�)-carvone, in
which the silyl group was transferred to the accepting enone.
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Scheme 179.
Addition of vinylmagnesium bromide gave the Torgov-type
intermediate, the carbocation of which, generated in the
presence of ZnBr2, could react with the new silyl enol ether
with the natural steroid configuration at C(14). Closure of
the C-ring then led to a cis-fused CD-ring system with the
natural steroid configuration at C(14) (Scheme 180).236

6.3. Use of quinic acid

D-(�)-Quinic acid, a commercially available cheap starting
material, possesses interesting (3R,5R)-1,3-dihydroxy and
a-hydroxy acid functions essential in the preparation of
A-ring precursors of 1a,25-dihydroxyvitamin D. In 1985,
Desmaele and Tanier were the first to achieve the synthesis
of the A-ring synthon conjugated aldehyde, already de-
scribed by Lythgoe, starting from this natural building block.
This involved a radical Barton–McCombie deoxygenation
of the C-2 hydroxyl group followed by introduction of the
19-methyl substituent with diazomethane as the key steps.
(�)-Methyl shikimate obtained from D-(�)-quinic acid
according to Gaudemer’s methodology237 was selectively
protected with tert-butyldimethylsilyl chloride at C(3) and
C(5). The remaining free hydroxyl was converted into thio-
nocarbonate and the alkene moiety was submitted to a [2,3]-
dipole cycloaddition of diazomethane. Then, pyrolysis of the
resulting pyrazoline, a tandem DIBALH/radical reduction,
and subsequent allylic oxidation led to the desired A-ring
a,b-unsaturated aldehyde (Scheme 181).238

Following a similar strategy, Mouriño and co-workers have
prepared an A-ring enyne synthon for the synthesis of 1a,25-
dihydroxy-19-nor-previtamin D3. The 19-nor analog of the
previous a,b-unsaturated aldehyde intermediate was sub-
jected to a Corey–Fuchs reaction in order to generate the
desired enyne diol (Scheme 182), while Gotor’s group pre-
ferred to synthesize it by the action of the lithiated trimethyl-
silyldiazomethane (Scheme 183). A selective desilylation of
the a,b-unsaturated ester intermediate at C(1) and its
OTES
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+

O

O

MeO
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H

H

7 : 1, 88% yield
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H
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H
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MeO
H
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68% yield

Scheme 180.
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Scheme 181.
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70% yield
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Scheme 183.
subsequent Mitsunobu inversion enabled access to the 1-epi
adduct (Scheme 184). When the monoprotected compound
was converted into the corresponding p-nitrobenzoate ester,
the configuration of the alcohol at C(3) could be inverted
under Mitsunobu conditions, giving, this time, the 3-epi
derivative (Scheme 185). Thus, palladium coupling of
each enyne with the known CD-ring/side chain vinyl triflate
afforded novel 6-s-cis pre-D locked analogs of the steroid
hormone, calcitriol.239,240
A slightly different procedure, reported by DeLuca, offered
another route to build 19-nor-vitamin D compounds from
a novel C2-symmetric A-ring unit accessible by using
D-(�)-quinic acid as a starting material. The main transfor-
mation concerned the degradation of the a-hydroxy acid
function into a ketone through a sequential reduction of
the ester group to allylic alcohol and oxidative cleavage
with NaIO4. As usual, removal of the 2-hydroxyl group pro-
ceeded by selective protection of the 1,3-diol followed by
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Scheme 185.
radical deoxygenation at C(4). Then, the allylic phosphine
oxide system was installed on the resulting C2-symmetric
ketone and the lithio anion engaged in a Horner–Witttig
reaction with the CD-ring Windaus–Grudmann ketone.
The 1a,25-dihydroxy-19-nor-vitamin D3 was isolated in
34% yield (Scheme 186).241
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Radical Keck allylation instead of reduction of the previous
thioimidazolide allowed the functionalization of the A-ring
precursor at the C(2)-position. Further transformations of
the resulting methyl allylquinicate led to 2-alkylated
(3R,5R)-3,5-dihydroxy-cyclohexanones, which could un-
dergo a Julia–Kocienski olefination with a CD-ring allyl
sulfone in order to construct the diene unit of a series of
2-modified 19-nor-1a,25-dihydroxyvitamin D3. The 2a-(3-
hydroxypropyl) group contributed to a marked increase in
both the VDR (vitamin D receptor) binding affinity and po-
tency in the induction of HL-60 cell differentiation (Scheme
187).242

New 19-nor analogs of the natural hormone possessing an
exomethylene group at the 2-position were prepared via
a Lythgoe-type Wittig–Horner coupling approach. DeLuca
and co-workers first described a synthetic route to the phos-
phine oxide A-ring synthon from (�)-quinic acid, which in-
volved a selective oxidation/olefination of the secondary
alcohol at C(2) and oxidative cleavage of a transient vicinal
diol at C(5) to cyclohexanone followed by its Peterson olefi-
nation. After coupling with (20R)- and (20S)-25-hydroxy
Grundmann ketones, these 2-methylene-19-norvitamins
were converted into the 2-methyl and 2-hydromethyl deriv-
atives.243 Additionally, 2-ethyl and 2-ethylidene analogs
were also synthesized four years later (Scheme 188).244

Vandewalle and co-workers exploited the potential of the
Wilson strategy, based on acid-catalyzed sigmatropic re-
arrangement of cyclopropylic alcohol into homoallylic
alcohol, to prepare 19-nor-1a-25-dihydroxyvitamin D3 and
related analogs. The requisite enantiomerically pure A-
ring cyclopropyl acetylene was obtained from D-(�)-quinic
acid by first selective protection of the hydroxyl groups at
C(1) and C(3) as silylated ether and lactone derivatives, re-
spectively, and removal of the remaining secondary and ter-
tiary alcohol at C(2) and C(6) through a Barton–McCombie
deoxygenation involving reduction of bis-thiocarbonyl
imidazolides. Subsequent to brosylate formation, intramo-
lecular alkylation of the ester enolate gave the bicyclic ester,
OH
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Scheme 189.
which was successively converted into aldehyde and alkyne
via Seyferth’s method to furnish the 19-nor A-ring precursor.
Addition of the corresponding lithium acetylide to the 25-
hydroxy Windaus–Grudmann ketone liberated the inter-
mediate propargylic alcohol, which was reduced to the
(E)-allylic alcohol. Acid-catalyzed solvolysis of this latter
alcohol furnished 19-nor-1a-25-dihydroxyvitamin D3 in
moderate yield (Scheme 189).245

In connection with his researches on vitamin D analog syn-
thesis, Vandewalle took advantage of the (S)-4-hydroxy-2-
cyclohexenone, easily available from D-(�)-quinic acid,246

to elaborate the 25-hydroxy-19-nor Windaus–Grudmann ke-
tone. His strategy involved a Lewis acid-catalyzed intermo-
lecular Diels–Alder reaction of the enone with isoprene
followed by an interesting cis-decalin to trans-hydrindane
transformation. The cycloaddition step led regioselectively
to a 3:1 mixture in favor of the syn-adduct. Epimerization
to trans-fused decalone and ring contraction provided the
trans-hydrindane intermediate. After further transforma-
tions, the 18-nor CD-ring ketone could be coupled with an
A-ring synthon phosphine oxide precursor (Scheme 190).247
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6.4. Use of malic acid

In 1976, Jonhson and co-workers reported the synthesis of
an optically active b-keto ester derived from L-(+)-malic
acid and used in the elaboration of natural prostaglandins
such as (+)-PGF2a.248 Later, this compound was also
demonstrated to be a valuable synthetic intermediate in
the construction of (+)-18-hydroxyestrone. Indeed, alkyl-
ation of its Cu(II) chelate by the modified Torgov steroid
precursor isothiouronium acetate in aqueous ethanol
gave the 8,14-secosteroid in which the acetoxy group has
been eliminated. Reduction of the enone by the Noyori
procedure and its subsequent cyclocondensation under
acidic conditions furnished the tetracyclic steroid skeleton
depicted in Scheme 191 as a key intermediate for the
synthesis of C-18 functionalized steroids, e.g.,
(+)-18-hydroxyestrone.249
A highly enantioselective conjugate addition of an alkenyl-
copper/phosphine complex to a (�)-2-substituted cyclopen-
tenone, a methylation of the transient enolate followed by an
intramolecular Diels–Alder reaction with the o-quinodime-
thane were the pivotal steps in the synthesis of estrone meth-
yl ether and its 7-alkylated derivative proposed by Takahashi
and co-workers. The phosphine-stabilized organocopper
reagent, prepared from an L-(+)-malic acid-derived vinyl
iodide, added to the enone with a high level of enantioselec-
tivity and provided exclusively the natural trans-anti-trans
steroid adduct by the cycloaddition (Scheme 192).250

Hoffmann-La Roche investigations by Shiuey and co-
workers have enabled the elaboration of a triply convergent
approach to the stereoselective synthesis of 1a,25-dihy-
droxy-24(R)-fluorocholecalciferol. The interesting features
of this strategy were the use of L-(+)-malic acid to introduce
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Scheme 193.
the chirality at C(24) of the side chain (Scheme 193), the Wi-
cha alkylation132 of the ester CD-ring synthon with the side
chain in position 20 giving predominantly the natural config-
uration at C(20), and the Lythgoe coupling with the A-ring
phosphine oxide described in Section 3.4.2.4. Utilizing the
DAST reagent, the C-24 hydroxyl group borne by the side
chain was cleanly substituted by a fluorine atom with a total
inversion of configuration (Scheme 194).251

Wicha and co-workers proposed another synthetic route for
the optically active A-ring allylic alcohol required in the
1a,25-dihydroxyvitamin D synthesis starting from L-(+)-
malic acid. As an alternative to their previous approach
based on a Sharpless epoxidation of 3-triphenylsilylglycidol
and reported in Section 5, the authors elaborated a similar
substituted epoxide by transforming the ester derived from
L-(+)-malic acid into a cyclopropanol derivative with the
use of the Kulinkovich cyclopropanation method.252 The
cyclopropanol moiety underwent a bromonium ion-induced
rearrangement, and the resulting hydroxyketone was
reduced to the anti diol and converted into the epoxide. Its
nucleophilic ring opening with lithium acetylide gave the
enyne diol, the corresponding vinyl iodide of which cyclized
under Heck reaction conditions (Scheme 195).253
6.5. Use of diethyl tartrate

In 1997, Hatakeyama and co-workers reported the synthesis
of 1a,24,25-trihydroxy-2b-(3-hydroxypropoxy)vitamin D3

(ED-71), a potent analog of the active 1a,25-dihydroxyvita-
min D3 bearing a hydroxypropoxy group in position 2b and
characterized by a highly calcemic activity and a long half-
life in plasma. For the construction of the 2-modified A-ring
precursor, they adopted the preceding enyne formation
approach using a new dihydroxylated terminal epoxide
intermediate and a similar Heck coupling reaction of a tran-
sient iodo derivative. Hence, elaboration of the acyclic enyne
triol was realized through basic functional-group manipula-
tions of the well-known C2 symmetric epoxide, already
prepared from (�)-diethyl D-tartrate by Nicolaou.254 The
Wittig–Horner reaction between the phosphine oxide and
the CD-ring synthon, obtained from the Inhoffen–Lythgoe
diol, furnished ED-71 (Scheme 196).255 Alternatively, the
transient terminal epoxide underwent a regioselective ring
opening with lithium trimethylsilylacetylide (Scheme
197). The formed 1,7-enyne was involved in a palladium-
catalyzed alkylative cyclization reaction with the CD-ring
fragments and applied for the synthesis of ED-71 and
24-hydroxylated ED-71.256
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6.6. Use of mannitol

As shown previously, Takahashi and Nakazawa achieved the
synthesis of the optically pure dienyl alcohol A-ring
fragment for the preparation of 1a,2b,25-trihydroxyvitamin
D3 analogs. In this work, the requisite dihydroxylated mono-
substituted epoxide was built up from the C2 symmetric
D-mannitol, as described in Scheme 198.257
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Ring opening of the latter epoxide with potassium cyanide
yielded the corresponding terminal nitrile, which was ex-
ploited as a precursor of the 1a,2b,25-trihydroxyvitamin
D3 A-ring. From this building block, two strategies have
been developed involving either a [3+2]-cycloaddition of
a nitrile oxide and a Peterson-type reaction of a 2-alkoxyme-
thylcyclohexanone (Scheme 199) or a b-keto ester formation
and a palladium-catalyzed cyclization of a transient vinyl
triflate (Scheme 200). An efficient solid-phase synthesis of
vitamin D3 analogs was also described considering the
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coupling of the polymer-supported CD-ring with the A-ring
allyl phosphine oxide and the subsequent alkylation of the
resulting polymer-supported tosylate with the side chain
Grignard reagent at C(21) (Scheme 201).258

Besides these efficient routes to A-ring synthons, a highly
diastereoselective synthetic approach to the optically active
25-hydroxy Windaus–Grudmann ketone was proposed by
Fukumoto and co-workers, in which the chirality was intro-
duced by glyceraldehyde acetonide, readily available from
D-mannitol. The anti-1,4-addition of an isoprenyl group to
the (R)-isopropylideneglyceraldehyde-derived unsaturated
ester,259 the trans-syn selective intramolecular [4+2] cyclo-
addition reaction of an olefinic ortho-quinodimethane, and
the complete regiocontrolled trans-hydrindane formation
by intramolecular epoxide opening of a bis-sulfonyl epoxide
represent the highlights of this synthesis (Scheme 202).260

Another glyceraldehyde acetonide-derived unsaturated ester
was used to prepare (+)-11-deoxy-19-nor-corticosterone ef-
ficiently via a rather similar synthetic plan. The main steps
that differed were the access to the intramolecular Diels–
Alder cycloaddition precursor from the a-methylated unsat-
urated ester involving a Jonhson–Claisen rearrangement/
benzocyclobutene alkylation sequence, the generation of
the A-ring from the tricyclic adduct by a Birch reduction,
reductive alkylation followed by Robinson annulation, and
then various manipulations of the side chain. However, the
Jonhson–Claisen rearrangement was carried out with poor
yield and diastereoselectivity, as mentioned in Scheme
203.261

Mikami and co-workers showed that the (S)-(Z)-allylic alco-
hol obtained from (R)-glyceraldehyde acetonide and heated
in the presence of the cyclic enol ether, 4,7-dimethoxy-1,2-
dihydro-naphthalene, in a sealed tube at 180 �C, underwent
a sequential Claisen rearrangement/intramolecular ene reac-
tion to provide a seco-C steroid that cyclized to (+)-9(11)-
dehydroestrone methyl ether through a modified McMurry
coupling reaction (Scheme 204).262 On the basis of this
work, Groen-Piotrowska and Groen used an identical syn-
thesis procedure to prepare norgestrel, but starting from
the glyceraldehyde acetonide-derived ethyl ketone (Scheme
205).263
6.7. Use of xylose or arabinose

Aldopentoses such as xylose and arabinose could be used to
prepare 1,7-enyne diols needed for the synthesis of 1a,25-di-
hydroxyvitamin D3 and its trihydroxylated analog (ED-71).
The latter analog involved Trost’s approach implying a tan-
dem palladium-catalyzed cross-coupling and intramolecular
carbometallation between the acyclic enynes, prepared from
D-xylose and D-arabinose, respectively, and the (E)-vinyl
bromide of the Windaus–Grundmann ketone (Schemes
206 and 207).264

As observed before, introduction of a 2a-methyl or 2a-(3-
hydroxypropyl) group into the 1a,25-dihydroxyvitamin D3

native hormone increased significantly the binding activity
to the VDR and the potency of calcium-mobilizing activity.
In order to prepare a variety of 2a-substituted analogs,
Takayama and co-workers opted for the Trost synthetic
approach involving a tandem palladium-catalyzed cross-
coupling and an intramolecular carbometallation between
an acyclic enyne and the (E)-vinyl bromide of the Wind-
aus–Grundmann ketone. The requisite enyne could be
obtained from D-xylose after ring opening of the anomeric
free hydroxyl carbohydrate by means of a Wittig reaction,
terminal epoxide formation, and introduction of an acetylene
unit into the epoxide using lithium acetylide. Elongation of
the hydroxymethyl group was carried out in a conventional
manner leading to a series of 2a-alkyl and 2a-hydroxyalkyl
derivatives (Scheme 208).265

6.8. Use of glucose

Taking advantage of the convergent pallado-catalyzed
strategy developed by Trost, Takayama and co-workers
accomplished the synthesis of three novel 2a-(u-hydroxy-
alkoxy)-1a,25-dihydroxyvitamin D3 derivatives, the C(2)-
a-modified A-ring precursors of which were elaborated
stereoselectively starting from D-glucose. To construct these
A-ring systems with the altrose configuration, the epoxide
available from methyl a-D-glucoside was chosen as the chi-
ral template and its regiospecific ring opening by a suitable
alkanediol at the C(3)-position yielded the intermediate
methyl 3-O-(3-hydroxyalkoxy)altropyranosides. Reduction
of the related primary bromides with activated zinc liberated
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the substituted 5-hexenols, readily transformed into olefinic
epoxides. Introduction of the acetylene unit provided the de-
sired 1,7-enyne (Scheme 209).266 As mentioned by Kittaka,
the 2a-substituents could be introduced by an addition re-
action of Grignard reagent toward the sugar epoxide, easily
obtained from D-glucose.267 Following this strategy, new an-
alogs of 1a,25-dihydroxyvitamin D3, which possess a hydro-
phobic aromatic ring on the 2a position, have also been
prepared.268

A sequence of two intramolecular Diels–Alder reactions was
employed by Sherburn and co-workers as key steps for the
construction of a 16-oxasteroid-type tetracyclic framework.
The enantiomerically pure Diels–Alder precursor was
prepared from D-glucose via a Wittig reaction between
a known enal and the semistabilized ylide derived from
2,4-pentadienyltriphenylphosphonium bromide followed
by condensation of the corresponding diene alcohol with a
bis-dienophile acid (Scheme 210).269

6.9. Use of methyl lactate

Sato and co-workers showed that the reaction of the optically
active propargyl phosphate prepared from methyl (R)-lactate
in 98% ee with a divalent titanium reagent Ti(O-i-Pr)4/
2i-PrMgCl generates a chiral allenyltitanium that can react
with an alkylidenemalonate with an excellent regio- and
anti-diastereoselectivity.270 Further group transformations
of the resultant Michael adduct, more particularly the d-lac-
tone formation and the tert-butyllithium-initiated iodoamide
ring closure, led to the enantio-enriched (2R,3R)-2-methyl-
3-[(1R)-1-methylprop-2-enyl]cyclopentanone. Robinson
annulation with methyl vinyl ketone furnished the hydrind-
enone as a useful chiral building block for synthesizing vita-
min D and steroid derivatives (Scheme 211).271

6.10. Use of pulegone

The intramolecular Diels–Alder (IMDA) reaction of a dieny-
nylsulfone with a 5-6-fused bicyclic sulfone was exploited
by Craig and co-workers to stereoselectively build the CD-
ring fragment of vitamin D3. The C(17) and C(20) stereocen-
ters and the natural side chain in the IMDA substrate were
installed by using (+)-(R)-citronellic acid, readily obtained
from (+)-(R)-pulegone and Evan’s oxazolidinone asymmet-
ric alkylation methodology. The modest selectivity of the
cyclization may be rationalized by considering the different
A1,3 strains in the competing transition-state conformations.
Dihydrogenation of the cycloadduct gave the expected
trans-hydrindane system. In parallel, it was demonstrated
that IMDA reaction of the sulfonyl-substituted triene gave
rise to the cis-ring junction compound (Scheme 212).272
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6.11. Use of ribonolactone

In 1985, Fukumoto and co-workers described an intramolec-
ular cycloaddition of an olefinic o-quinodimethane for the
construction of des-AB-aromatic steroids in optically active
form, such as those found in (+)-aldosterone. Thermolysis of
4b-[2-(4-methoxybenzocyclobutenyl)ethyl]-5a-methoxy-
methyl-3-phenyl-thio-methylenefuran-2-ones, containing
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a butenolide ring conveniently prepared from D-(+)-ribo-
nolactone,273 yielded the tricyclic lactone as a mixture of
trans/cis-ring junction isomers. The stereochemical outcome
of the reaction is related to the nature of the R group and was
shown to be controlled in the transition state by the steric
repulsion between the o-quinodimethane moiety and the
bulky R group (Scheme 213).274

6.12. Use of glutamic acid

(S)-g-Trityloxymethyl-g-butyrolactone, obtained in four
steps from L-glutamic acid, was used by Takano’s group in
the preparation of a useful chiral building block disubstituted
cyclopentanone for the synthesis of vitamin D3 metabolites
that possess the common C(17R) and C(20R) configurations.
The starting lactone was subjected to aldol condensation
with 2-methyl-2-heptene-2-one. Then, the bulkiness of the
trityloxymethyl group at the g-position was exploited to
introduce the chirality at C(17) and C(20) via stereoselective
hydrogenation of the unsaturated lactone and kinetic
protonation of its lithium enolate. Finally, Dieckmann
condensation of an advanced acyclic intermediate and sub-
sequent decarboxylation liberated the cyclopentanone
(Scheme 214).275

6.13. Use of limonene

A new C(19) hydroxylated enyne, as a potential A-ring
building block of vitamin D analogs, was synthesized in
enantiomerically pure form in nine steps from (�)-(S)-limo-
nene by Santelli and co-workers. Their concise approach
involved ozonolysis of 1,2-limonene oxide followed by
a Criegee rearrangement, epoxide trans-diaxial ring opening
by lithium acetylide, elimination, epoxidation, and syn
b-elimination of the resulting homopropargylic oxirane
(Scheme 215).276

6.14. Use of a-thujone

In 1982, Kutney and co-workers reported a one-step syn-
thesis of an optically active steroidal analog from a thujone-
derived tricyclic enone. Treatment of the enone with an
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equivalent reagent of ethyl vinyl ketone yielded the classic
Robinson annulation adduct in 33% yield together with the
unexpected pentacyclic compound isolated in 39% yield.
Its formation may involve cyclocondensation of the trike-
tone intermediate resulting from the addition of two mole-
cules of ethyl vinyl ketone to the enone and subsequent
dehydration. One year later, the same authors applied the
Fujimoto–Belleau reaction32 to transform the dienol lactone
obtained from the thujone-derived enone into an a-substituted
dienone. Conventional Birch reductive alkylation, hydroly-
sis of the acetal, and base-promoted cyclization gave the de-
sired steroid analog with a CD cis junction (Scheme 216).277

6.15. Use of epichlorhydrin

An enantioconvergent approach to the linear and cyclic
A-ring precursors of calcitriol from either (R)- or (S)-epi-
chlorhydrin was proposed by Tazumi and Ogasawara. Se-
quential reaction with prop-1-ynyl tetrahydropyranyl ether
and trimethylsilylacetylene and vice versa generated a com-
mon diynol, which was transformed to Trost’s enynol. From
this latter compound, the corresponding ethyl propiolate
underwent a palladium(0)-catalyzed cycloisomerization
reaction to give the dialkylidenecyclohexane as a known
A-ring precursor (Scheme 217).278 Concomitantly, a similar
route to Hoffmann-La Roche’s A-ring synthon, developed
by Hatakeyama and co-workers, centered on a double
propargylation of (R)-epichlorhydrin, a diastereoselective
epoxidation of the (E)-allyl alcohol unit and a palladium-
(0)-promoted intramolecular Heck-type reaction of an
u-vinyl-(Z)-iodoalkene obtained by reductive iodination of
a propargylic alcohol fragment (Scheme 218).279

An efficient access to the enantiopure 5-(tert-butyldimethyl-
silyloxy)-2-cyclohexenone was proposed by Sato and Kasat-
kin. The reaction sequence outlined in Scheme 219 included
a Kulinkovich-type hydroxycyclopropanation reaction280 of
ethyl 3-hydrohex-5-enoate, consisting of an intramolecular
nucleophilic acyl substitution mediated by Ti(O-i-Pr)4/2i-
PrMgBr, and an FeCl3-assisted ring expansion in the next
step. The non-racemic starting b-hydroxy ester was elabo-
rated from the commercially available (S)-epichlorhydrin281

or the ethyl 4-chloro-3-hydroxybutyrate easily obtained by
enzymatic reduction of the corresponding b-keto ester
with Saccharomyces cerevisiae.282

This building block could be rapidly modified to an A-ring
synthon of 1a,25-dihydroxyvitamin D3 according to two
different synthetic routes from a common intermediate,
obtained by a diastereoselective cat. OsO4/NMO



11595A.-S. Chapelon et al. / Tetrahedron 63 (2007) 11511–11616
O

Cl

O
O

N

Ph

O

H

A

O

O

N

Ph

O

O

O

N

Ph

O

H

O

O

H
O

H

H

OTBDMS

H

OH

H

OH
I

H

H

O

H

O
SO2Ph

H

PhO2S

H

PhO2S

H

PhO2S

H

PhO2S
H

1. n-BuLi
→ A

(Me3Si)2NNa
→ allyl bromide

87% yield

1. 9-BBN
2. H2O2 - NaOH
3. t-BuOK / t-BuOH

72% yield

1. DIBALH

2. t-BuMe2SiOTf

71% yield

69% yield

1. Ph3P=CHI
2.  t-BuOK / THF
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Scheme 212.
dihydroxylation (which set the stereochemistry of the hy-
droxyl group at C(1)), a Reformatsky reaction, a regioselec-
tive protection of the hydroxyl group at C(1), and a Swern
oxidation at C(10). The methylenation reaction of the ketone
with the Zn-CH2Br2/TiCl4 reagent and the b-elimination of
the tertiary alcohol, achieved by treatment with Et2NH and
cat. Pd(PPh3)4, liberated the (E)-a,b-unsaturated ester,
which could be converted into the (Z)-isomer by photo-
isomerization (Scheme 220).283 The latter isomer was also
accessible by Sc(OTf)3-catalyzed intramolecular lactoniza-
tion in acetic anhydride and b-elimination of the acetate
group that fixed the (Z)-geometry of the trisubstituted double
bond (Scheme 221).284
From the previous optically pure silyl-protected 5-hydroxy-
2-cyclohexenone, Sato and co-workers reported an efficient
synthesis of the A-ring precursor of 19-nor-1a,25-
dihydroxyvitamin D3 and its 13C- or 2H-labeled derivatives.
These syntheses centered on a practical five-step reaction se-
quence, which comprised a highly diastereoselective epoxi-
dation, a Horner–Wadsworth–Emmons olefination with
either (EtO)2(O)PCH2CO2Et or (EtO)2(O)P–13CH2CO2Et
and a regiospecific reductive ring opening of the epoxide
carried out with HCO2H or DCO2D in the presence of
Pd2(dba)3–CHCl3/Bu3P.285 By another route, the epoxy
ketone underwent a stereospecific Wittig olefination with
(Ph3P(+)CH2Br)Br(�) and KHMDS followed by an epoxide
MeO
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Scheme 213.
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Scheme 214.
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Scheme 215.
ring opening of the diene monoepoxide by reduction with
DIBALH and conversion of the vinyl bromide moiety into
vinyl boronate through a sequential treatment with t-BuLi,
B(O-i-Pr)3, aqueous NH4Cl, and pinacol. Thus, the latter
boronate was subjected to a Suzuki–Miyaura coupling reac-
tion with the bromide compound of the CD-ring portion
(Scheme 222). Similarly, cross-coupling with the A-ring
bromide and the CD-ring boronate proceeded in reasonable
yield and this methodology was immediately applied to the
solid-phase synthesis of des-CD-19-nor-vitamin D3 deriva-
tives (Scheme 223).286

A strategy for the solid-phase synthesis of a vitamin D3 li-
brary was developed by Takahashi. The modified CD-rings
and the side chain moieties were readily available from the
Inhoffen–Lythgoe diol and bromo esters, respectively, and
H
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H

60% yield

O

(–)-α-thujone

O

OMe

O

t-BuOK / t-BuOH - Et2O

1.

2. NaOH
3. Ac2O, AcONa

O

O
45% yield

EtCO(CH2)2N(+)Et2
Me

, I(−)

- KOH / EtOH

O O

+

33% yield 39% yield

MgBr

O

O / Et2O

1.

O
H

H

O

O

→ MeI
1. Li / NH3 -THF- t-BuOH

2. 1 N HCl / EtOH
3. KOH

3. NaOH 
    / H2O - EtOH

2. H2 - Pd(C)
    - Et3N / EtOAc

43% yield

Scheme 216.
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the A-ring moieties could be prepared from the correspond-
ing enol triflates through a Pd(0)-catalyzed intramolecular
Heck reaction. The enol triflates were accessible by dia-
stereoselective reduction of enantiomerically pure b-hy-
droxyketones, prepared by chemoselective alkylation of
the lithiated protected cyanohydrin of acrolein with (R)- or
(S)-epichlorohydrin (Scheme 224).287
6.16. Use of methyl 3-hydroxy-2-methylpropionate

Grieco and co-workers achieved a formal synthesis of the
Inhoffen–Lythgoe diol employing a key diastereoselective
intermolecular aqueous Diels–Alder strategy, in which the
C(20) stereocenter was part of the diene unit that was
used to elaborate the C(13) and C(17) stereocenters of
O
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Scheme 219.
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the latent CD trans-fused hydrindane ring system. The so-
dium salt of the chiral diene acid, which served as a partner
in the Diels–Alder process with methacrolein, was accessi-
ble in a few steps from (R)-(�)-methyl 3-hydroxy-2-meth-
ylpropionate using a tandem sulfenate–sulfoxide [2,3]
sigmatropic rearrangement/syn elimination strategy. Subse-
quent oxidative cleavage of the bisprotected diol and aldol
condensation provided the D-ring precursor cyclopente-
none, which was diastereoselectively reduced into the
desired alcohol. Chirality transfer from C(16) to C(14) pro-
ceeded via a Claisen rearrangement and yielded the g,d-un-
saturated aldehyde. The thermodynamic silyl enol ether of
the related methyl ketone was then subjected to a zinc
chloride-induced aldol condensation and final reduction
of the diene unit generated the trans-fused hydrindane
(Scheme 225).288

The use of both enantiomers of methyl 3-hydroxy-2-methyl-
propionate, as starting materials, allowed the synthesis of
A-ring diastereoisomers of 2-methyl-1,25-dihydroxyvita-
min D3 and their 20-epimers. Takayama and co-workers
have developed a versatile method for preparing a wide
range of 2-methyl-substituted A-ring enyne synthons, based
on the introduction of an acetylene unit and a vinyl group
into an epoxy aldehyde precursor derived from methyl 3-hy-
droxy-2-methylpropionate. Coupling of the resulting A-ring
enynes with the CD-ring portions in the presence of the Pd
catalyst furnished the 2-methyl analogs (Scheme 226).289
O

OH

MeO

1. TBDPSCl
- DMAP - Et3N

/ CH2Cl2
2. LiAlH4 / THF

OTBDPS

HO

1. PCC - NaOAc
/ CH2Cl2

2.
BrMg

/ THF

OTBDPS

HO

O2N

NO2

SCl

- Et3N / ClCH2CH2Cl

OTBDPS

76% yield

1. (n-Bu)4NF / THF
2. Jones reagent

CO2H

2. LiAlH4 / THF

CHO1.
NaOH / H2O

OHHO

63% yield50% overall yield

1. TBDPSCl
- DMAP - Et3N
/ CH2Cl2

2. Ac2O / pyridine

OTBDPSAcO

3. HC(OMe)3 -
CeCl3 / MeOH

90% yield

2. NaIO4 / MeOH -            
THF

1. OsO4 / pyridine

O

OTBDPSAcO

MeO

MeO

1. LiBH4 / THF
2. Swern ox.
3. KOH / EtOH

OTBDPS

O
MeO OMe

70% yield 58% yield

1. NaBH4 - CeCl3•7H2O/ EtOH
2. (n-Bu)4NF / THF
3. TBDMSCl - DMAP - Et3N

/ CH2Cl2

OTBDMS

OH
MeO OMe

60% yield

OTBDMS

OMe

MeO

CHO
H

1. ethyl vinyl ether
/ Hg(OAc)2

2. decalin / Δ

75% yield

1. MeLi / Et2O
2. PCC - NaOAc

/ CH2Cl2

OTBDMS

OMe

MeO

H

OSiMe3

1. ZnCl2 - Et2O
 / CH2Cl2

OTBDMS

H

O

2. t-BuOK / Et2O
3. H2 - Pd (C) / EtOAc

72% yield

3. (Me3Si)2NH

/ pentane
- Me3SiI

Scheme 225.



11600 A.-S. Chapelon et al. / Tetrahedron 63 (2007) 11511–11616
O

OH

MeO

1. TBDPSCl
- imidazole
/ CH2Cl2

2. DIBALH
    / PhMe

OTBDPS

HO

OTBDPS

3. m-CPBA
    / CH2Cl2

1. Swern ox.
2. Ph3P(+)CH3, Br(–)

      - n-BuLi / THF

O
H

OTBDPS

TMS

HO

TMS
/ THF

Li

→ BF3.OEt2

90% yield 91% yield 93% yield

CHO
THPO HO OH

1. DHP - PPTS 
    / CH2Cl2

OTBDPS

TMS

HO

OTBDPS

TMS

HO

2. (n-Bu)4NF / THF
3. Swern ox. HO OH

HO OH HO OH

1. CH2=CHMgBr     
- CeCl3 / THF

90% yield

2. TsOH / MeOH +

36% yield 34% yield

+

Scheme 226.
6.17. Use of a-pinene

Linclau and Vandewalle have reported a synthesis of 10,19-
dihydro-10-methyl 1a,25-dihydroxyvitamin D3 by develop-
ing a 10,10-dimethyl-substituted novel A-ring phosphine
oxide precursor, the formation of which was based on the
selective functionalization of an advanced intermediate
cyclohexenone derived from (+)-a-pinene. The crucial steps
involved the elaboration of the 1,3-trans diol configuration
via a selective epoxidation of the enone motif and the forma-
tion of the Z-unsaturated ester by a highly selective phenyl-
selenylation–oxidation–elimination procedure (Scheme
227).290

6.18. Use of b-pinene

An enantioselective approach to cyclopentanoids such as
steroid D-ring synthons possessing a functionalized side
chain was proposed by Kato and co-workers. They first
showed that BF3$Et2O-promoted cyclobutane ring opening
of (1R,4R,5R)-4-methylnopinone, readily obtained from
(�)-b-pinene by ozonolysis and conjugate addition of lith-
ium dimethylcuprate, gave the enol acetate. The epoxidation
adducts underwent a Lewis acid-induced tandem epoxide
rearrangement/intramolecular aldol-type condensation and
a few chemical transformations afforded the bicyclo-
[3.2.1]octan-2-ones. A smooth retro-aldol condensation fol-
lowed by isomerization of the ring methyl group liberated
the substituted cyclopentanone including both the secondary
methyl group (R) in the side chain and the side chain itself
(R) with the same absolute configuration of steroidal sub-
strates (Scheme 228).291

6.19. Use of menthol

In 1992, Daniewski and Warchol provided a construction of
the D-ring building block of (24S)-24-hydroxy vitamin D3

from natural (�)-menthol. The terpene was successively ox-
idized to (�)-menthone and the corresponding lactone,
which was alkylated with allyl bromide to a single allyl de-
rivative having substitutents at trans positions to the methyl
group. This latter allyl compound was transformed into the
desired cyclopentanone according to three different routes,
as described in Scheme 229. The two bromo epoxide inter-
mediates cyclized by treatment with active copper, whereas
the enaldehyde underwent a free-radical cyclization in the
presence of Na/naphthalene.292 A Taber cyclization of a
(�)-menthol-derived diazo-b-keto ester catalyzed by rho-
dium diacetate was also utilized for the synthesis of the D
segment (Scheme 230).293
O
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7. Use of enzymes

An alternative approach to the synthesis of enantiopure vita-
min D A-ring precursors that does not require the use of mol-
ecules from the chiral pool was proposed by Okamura and
co-workers. This latter method consisted of a kinetic enzy-
matic resolution of the known racemic enynol, which in-
volved Chromobacterium viscosum lipase (CVL)-catalyzed
acylation of one enantiomer with vinyl acetate and led to
the (R)-(+)-acetate and the unchanged (S)-(�)-alcohol
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isolated in 94% yield and >97% ee, respectively. Moreover,
related enyne diols were regioselectively acylated either at
the allylic C(1) hydroxyl for the (R,R) cis derivative or at
the nonallylic C(3)-position for the other stereoisomers.294a

CVL proved to be the most efficient enzyme for acylation re-
actions, while Candida antarctica lipase (CAL) was found
to be the best for enzymatic synthesis of carbonates with (vi-
nyloxy)-carbonyl oxime. Similarly, the alkoxycarbonylation
occurred preferentially at the allylic C(1) hydroxyl for the
(R,R) cis derivative or at C-3 for the other stereoisomers.
In addition, the resulting carbonates could be efficiently
converted into carbamates by reaction with amino deriva-
tives.294b,c Finally, CAL-B or CVL catalyzed the alkoxycar-
bonylation process of 19-nor-A-ring stereoisomers of 1a,25-
dihydroxy-19-nor-previtamin D3 in the presence of acetone
O-(phenoxycarbonyl)-oxime with high selectivity. The op-
posite regioselectivity shown by each couple of enantiomers
is noteworthy (Scheme 231).294d,295 Regioselective enzy-
matic hydrolysis reactions of dicarbonate A-ring stereoiso-
meric precursors with Candida rugosa lipase (CRL) and
CVL have also been accomplished.296

Enzymatic desymmetrization of meso all-cis-3,5-dihydroxy-
1-(methoxycarbonyl) cyclohexane into a single enantiomer
provided an elegant route to the synthesis of A-ring synthons
of 19-nor vitamin D analogs. Porcine pancreas lipase (PPL)-
catalyzed transesterification of the 1,3-cyclohexanediol-type
compound with vinyl acetate was developed by Vandewalle
and co-workers to prepare enantiopure intermediates of
(1R,3S)-3-(tert-butyldimethylsilyloxy)bicyclo[3.1.0]hexane-
1-carbaldehyde and its diastereoisomers.297 The resulting
monoacetate alcohol was subsequently tosylated and sub-
mitted to an intramolecular alkylation of the enolate ester
followed by a two-step reduction–oxidation procedure to
furnish the bicyclic aldehyde. Cross-coupling with the vi-
nylic lithium derivative of appropriate cis-fused hydrindanes
and acid-promoted carbinol ring opening produced the
14-epi-19-nor-1a,25-dihydroxyvitamin D3 analogs (Scheme
232).298

In parallel studies, Kalkote and co-workers have accom-
plished the desymmetrization of the cis-triacetate derivative
of phloroglucitol through selective enzymatic hydrolysis of
two different acetate groups with porcine liver esterase. An
inversion of the alcohol under Mitsunobu conditions was
performed on the mixed THP and TBDMS bisprotected triol,
generating, at this point, a common precursor of both enan-
tiomeric forms of the bisprotected trans-3,5-dihydroxy cy-
clohexanone299 utilized in the synthesis of 19-nor, des-CD
vitamin D3 analogs by Hilpert and Wirz (Scheme 233).300

As already shown, enantiopure (3S,5R)-oct-1-en-7-yne-3,5-
diol derivatives were considered as useful intermediates for
A-ring fragment synthesis required in the preparation of
1a,25-dihydroxyvitamin D3 and analogs involving either
palladium-catalyzed alkylative enyne cyclization developed
by Trost or Lythgoe’s coupling between the corresponding
phosphine oxide and Windaus–Grundmann ketone. The con-
struction of the 1,7-enynes started with a kinetic resolution
of the racemic b-hydroxy ester, resulting from the aldol
reaction of acrolein with the lithium enolate of tert-butyl
acetate, via lipase-catalyzed esterification with vinyl acetate.
PS-Amano lipase was found to be highly efficient and gave
the desired (S)-acetate in >99% ee. However, addition of
allenylzinc bromide to the silyl-protected a-hydroxy alde-
hyde occurred in a non-selective manner, leading to a syn-
anti mixture of the enyne target compound in a 4:7 ratio.
The latter derivative was also a key intermediate for the
synthesis of the allylic alcohol A-ring precursor, the exo-
cyclic diene of which with (Z)-geometry was formed upon
an intramolecular Heck reaction of the (Z)-vinyl iodide
(Scheme 234).301
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The resulting dienol could also be synthesized starting from
a chiral monoester enzymatically generated by selective
hydrolysis of the symmetric unsaturated cis diester with
pig liver esterase (PLE). Hydroxyl groups at C(3) and C(1)
were introduced by iodolactonization and selective epoxida-
tion–reduction of the corresponding eliminated product
(Scheme 235).302

Wu-Yong and Vandewalle prepared the optically active,
1-bromobicyclo[3.1.0]hexan-3-ol, by enzymatic kinetic
resolution with Pseudomonas fluorescens lipase and vinyl
acetate as an A-ring precursor for 19-nor-1a,25-dihydroxy-
vitamin D3 analogs. In order to generate the diene unit,
addition of the lithiated bicyclo[3.1.0]hexane, generated by
lithium–bromide exchange, to the a,b-unsaturated aldehyde
of Windaus–Grundmann ketone followed by acid-catalyzed
sigmatropic rearrangement of the cyclovitamin gave rise to
the vitamin D diene system in 72% yield (Scheme 236).303

Racemic 2-trimethylethynyl-2-cyclopentenol, an intermedi-
ate in the synthesis of 1a,25-dihydroxyvitamin D3 required
in the Wilson and Uskokovic approach, was resolved via
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kinetic acetylation with vinyl acetate in the presence of
lipase PS (Amano, Pseudomonas sp.) (Scheme 237).304

Similarly, lipase-mediated resolution of racemic 2-carbe-
thoxy-2-cyclopentenol furnished the optically pure (R)-ace-
tate and (S)-alcohol and the requisite acetylene side chain
was introduced employing the Fuchs–Corey method
(Scheme 238).305

Kinetic resolution of 5-hydroxymethyl-3-methoxymethoxy-
2-cyclohexenone using lipase-catalyzed enantioselective
esterification of its primary alcohol group was reported by
Yamada and co-workers to generate the chiral CD-ring
trans-hydrindanone of 12-oxygenated steroid types of anti-
tumor marine aragusterols. The formation of the expected
bicyclic aliphatic intermediate was obtained by stereocon-
trolled inter- and intramolecular Michael addition reaction
with a functionalized a,b-unsaturated ester, intramolecular
pinacol coupling, and subsequent carbon–carbon bond
cleavage through retro-aldol reaction (Scheme 239).306

As reported by Takano, the optically active (�)-tricyclic
dienone, accessible from racemic dicyclopentadiene via
allylic oxidation and lipase-mediated kinetic hydrolysis of
the corresponding acetate,307 was revealed to be an excellent
dienophile to react regio- and diastereoselectively with
Dane’s diene in the presence of diethylaluminum chloride.
Methylation of the exo-adduct at C(13) occurred exclusively
from the convex face of the enolate, leading to the trans-
fused CD-ring junction of natural steroid skeletons. Hydro-
genation of the C(9)–C(11) double bond by triethylsilane
and trifluoroacetic acid gave rise to the trans-BC fused prod-
uct, which underwent a retro Diels–alder reaction upon
heating. A few transformations liberated the (+)-estrone
(Scheme 240).308

Two years earlier, Takano’s research group had exploited the
reactivity of the chiral cyclopentadienone synthon for the
elaboration of the estrogenic steroid, (+)-equilenin. The re-
action sequence started with the 1,4-addition of a naphtha-
lene-derived Grignard reagent catalyzed by copper(I)
iodide followed by metallo-enamine formation and two suc-
cessive alkylations with allyl bromide and methyl iodide, re-
spectively. Upon thermolysis, the seco-C steroid was
liberated and converted into (+)-equilenin via a Pummerer-
type cyclization as a key step (Scheme 241).309

Steroid-derived natural products such as nicandrenones have
been synthesized by Corey and co-workers. The Amano
lipase PS-mediated kinetic resolution of the racemic cis-3-si-
lylated cyclohexanol was used to prepare the corresponding
enantiomerically pure a,b enone, which was engaged in an
unusual exo selective Diels–Alder process. A series of func-
tional-group manipulations transformed the tetracyclic
nicandrenone nucleus and the elaboration of the complex
side chain involved a key CBS reduction of an ynone
(Scheme 242).310

In 1978, Rosenberger and co-workers achieved the construc-
tion of the optically pure (�)-17b-hydroxy-des-A-androst-
9-en-5-one, a BCD-tricyclic steroid precursor, starting
from a chiral d-lactone readily obtained by selective micro-
biological reduction of the prochiral 5-keto heptanoic acid
with a culture of Margarinomyces bubaki. On sequential
vinylmagnesium chloride addition, diethylamine trapping,
I
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and mild acid treatment, the crude oxime ether afforded a
masked Mannich base, which was condensed with 2-methyl-
cyclopentane-1,3-dione to give predominantly the 13b-trans
diene. Suitable manipulations of this key substrate, depicted
in Scheme 243, led to the target tricyclic adduct.311

A variety of 7-methyl-19-nor-steroids were synthesized by
Cai and co-workers through alkylation of a CD-ring
fragment indenone with a chiral tosylate derived from the
product of asymmetric reduction of 1-(3-methoxy-phenyl)-
2-propanone by Saccharomyces cerevisiae. Subsequent hy-
drogenation gave the trans-perhydroindane, which cyclized
to produce the complete tetracyclic steroid skeleton. The
natural trans-anti-trans arrangement was established after
a second hydrogenation and led to the 7a,18-dimethyl estra-
diol derivative (Scheme 244).312
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M. R. Tetrahedron Lett. 1992, 33, 7701–7704.

188. Mikami, K.; Osawa, A.; Isaka, A.; Sawa, E.; Shimizu, M.;
Terada, M.; Kubodera, N.; Nakagawa, K.; Tsugawa, N.;
Okano, T. Tetrahedron Lett. 1998, 39, 3359–3362.

189. Mikami, K.; Koizumi, Y.; Osawa, A.; Terada, M.; Takayama,
H.; Nakagawa, K.; Okano, T. Synlett 1999, 1899–1902.

190. Singer, R. A.; Carreira, E. M. J. Am. Chem. Soc. 1995, 117,
12360–12361.

191. Ann�e, S.; Yong, W.; Vandewalle, M. Synlett 1999, 1435–
1437.

192. Hiyamizu, H.; Ooi, H.; Inomoto, Y.; Esumi, T.; Iwabuchi, Y.;
Hatakeyama, S. Org. Lett. 2001, 3, 473–475.

193. Codesido, E. M.; Cid, M. M.; Castedo, L.; Mouriño, A.;
Granja, J. R. Tetrahedron Lett. 2000, 41, 5861–5864.

194. Miles, W. H.; Connell, K. B. Tetrahedron Lett. 2003, 44,
1161–1163.

195. Quinkert, G.; Del Grosso, M.; Bucher, A.; Bauch, M.; D€oring,
W.; Bats, J. W.; D€urner, G. Tetrahedron Lett. 1992, 33, 3617–
3620.

196. Quinkert, G.; Del Grosso, M.; D€oring, A.; D€oring, W.;
Schenkel, R. I.; Bauch, M.; Dambacher, G. T.; Bats, J. W.;



11612 A.-S. Chapelon et al. / Tetrahedron 63 (2007) 11511–11616
Zimmermann, G.; D€urner, G. Helv. Chim. Acta 1995, 78,
1345–1391.

197. Hu, Q.-Y.; Rege, P. D.; Corey, E. J. J. Am. Chem. Soc. 2004,
126, 5984–5986.

198. Soorukram, D.; Knochel, P. Org. Lett. 2007, 9, 1021–1023.
199. Nemoto, H.; Yoshida, M.; Fukumoto, K.; Ihara, M.

Tetrahedron Lett. 1999, 40, 907–910.
200. Michalak, K.; Stepanenko, W.; Wicha, J. Tetrahedron Lett.

1996, 39, 7657–7658.
201. Stepanenko, W.; Wicha, J. Tetrahedron Lett. 1998, 39, 885–888.
202. Zhou, S.-Z.; Ann�e, S.; Vandewalle, M. Tetrahedron Lett.

1996, 37, 7637–7640.
203. Parker, K. A.; Dermatakis, A. J. Org. Chem. 1997, 62, 6692–

6696.
204. Giuffredi, G.; Bobbio, C.; Gouverneur, V. J. Org. Chem. 2006,

71, 5361–5364.
205. (a) Nemoto, H.; Satoh, A.; Fukumoto, K. J. Chem. Soc.,

Perkin Trans. 1 1994, 943–946; (b) Nemoto, H.; Satoh, A.;
Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1993, 2237–
2238; (c) Nemoto, H.; Matsuhashi, N.; Satoh, A.;
Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1992, 495–498.

206. Hatakeyama, S.; Numata, H.; Osanai, K.; Takano, S. J. Chem.
Soc., Chem. Commun. 1989, 1893–1895.

207. Stork, G.; Kobayashi, Y.; Suzuki, T.; Zhao, K. J. Am. Chem.
Soc. 1990, 112, 1661–1663.

208. (a) Gorobets, E.; Urbansky-Pikowska, Z.; Stepanenko, V.;
Wicha, J. Tetrahedron Lett. 2001, 42, 1135–1138; (b)
Gorobets, E.; Stepanenko, V.; Wicha, J. Eur. J. Org. Chem.
2004, 783–799.

209. Achmatowicz, B.; Gorobets, E.; Marczak, S.; Pzezdziecka,
A.; Steinmeyer, A.; Wicha, J.; Z€ugel, U. Tetrahedron Lett.
2001, 42, 2891–2895.

210. Achmatowicz, B.; Jankowski, P.; Wicha, J. Tetrahedron Lett.
1997, 62, 6353–6358.

211. Trost, B. M.; Pfrengle, W.; Urabe, H.; Dumas, J. J. Am. Chem.
Soc. 1992, 114, 1923–1924.

212. (a) Trost, B. M.; Dumas, J. J. Am. Chem. Soc. 1992, 114,
1924–1925; (b) Trost, B. M.; Dumas, J.; Villa, M. J. Am.
Chem. Soc. 1992, 114, 9836–9845.

213. Hanazawa, T.; Koyama, A.; Wada, T.; Morishige, E.;
Okamoto, S.; Sato, F. Org. Lett. 2003, 5, 523–525.
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